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Current treatments for anterior cruciate ligament injury are largely successful at restoring 

stability to the knee and enabling patients to return to functional activities. However, the long-term 

outcomes are suboptimal, with high percentages of patients showing signs of early onset osteoarthritis 

(OA) 10 years post-injury regardless of treatment. In vitro and animal studies indicate that alterations 

in cartilage loading patterns following injury disrupt tissue homeostasis and are likely a key factor in 

the initiation of OA. Dynamic imaging studies indicate altered kinematics, and thus loading patterns, 

are present in ACL deficient and reconstructed knees during functional movements. Thus, 

improvements in both conservative rehabilitation and surgical reconstruction treatments for ACL 

injury are necessary to restore cartilage loading and preserve the long-term health of the knee. 

Musculoskeletal computer simulation provides opportunity to gain insight into the how 

modification in treatments effect knee mechanics during movement. However, existing simulation 

frameworks either focus on resolving detailed knee mechanics with finite element models, or the 

muscle forces necessary to generate a measured movement using musculoskeletal models. Few 

simulation frameworks are capable of simultaneously resolving whole-body and joint scale dynamics. 

Traditionally, despite the substantial uncertainty in model parameters and the objective used to 

resolved muscle redundancy, musculoskeletal simulations have been performed in a deterministic 

manner. This dissertation introduces the Concurrent Optimization of Muscle Activations and 

Kinematics (COMAK) framework to predict muscle forces and knee joint mechanics during 

movement in a probabilistic manner. 

The COMAK framework was then applied to investigate conservative and surgical treatments 

for ACL injury. The framework predictions indicate that wear patterns in ACL and menisci deficient 



iv 
 

knees correspond with regions that experience increased contact pressure during walking. To better 

inform surgical practices, the framework was used to assess the influence of controllable factors (graft 

stiffness, reference strain, and tunnel locations) on predicted knee mechanics during walking. For 

conservative treatment, model predictions indicate that cartilage loading patterns during walking 

cannot be restored solely through altered muscle coordination strategies. 
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Colin R. Smith, Scott C.E. Brandon, Darryl Thelen 
 
 

 Osteoarthritis (OA) is a common and debilitating joint disease characterized by articular 

cartilage degradation. OA affects 10% of men and 13% of women over age 601, most commonly in 

the knee joint2. The predominate symptoms of OA are joint pain and stiffness, which result in reduced 

physical activity and often lead to obesity and cardiovascular complications3. In 2003, lost earnings 

and health care costs due to OA in the US exceeded $128 billion4. Unfortunately, the molecular 

etiology of OA is not well understood, which has limited the development of medications and tissue 

engineering treatments. While conservative treatment can delay the progression of OA, late stage OA 

can only be treated by total joint replacement. Thus, improved treatments to mitigate the pathogenesis 

of OA are important to improve the quality of life for current generations. 

OA is not isolated to the elderly population. Injury to the knee can initiate the development 

of post-traumatic osteoarthritis (PTOA) in healthy young adults. One of the leading causes of PTOA 

is an injury to the anterior cruciate ligament (ACL)5. While both conservative and surgical treatments 

to ACL rupture effectively restore stability to the knee and return patients to pre-injury activity levels, 

up to 50% of patients develop OA within 10 years regardless of the treatment6. OA in patients with 

ACL injury occurs 15 to 20 years earlier than primary OA, which results in extended periods of pain 

and disability before a total knee replacement (TKR) becomes a feasible option7.  
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There is significant variability in both conservative rehabilitation and surgical reconstruction 

treatments for ACL injury. In the United States, nearly 95% of patients undergo reconstruction, 

however, in Europe as low as 50% of patients select the surgical treatment8. Conservative treatments 

typically involve rehabilitative exercises, proprioceptive training and more recently, neuromuscular 

retraining9. The objectives of neuromuscular retraining are to induce compensatory changes in muscle 

activation patterns and facilitate dynamic joint stability in patients with ACL injury10. Surgical 

reconstruction of the ACL requires arthroscopic replacement of the torn ACL with a graft, which is 

most commonly a section of the patellar or hamstrings tendon. To place the graft, two bone tunnels 

are drilled, one in the femur and one in the tibia. The ACL graft is then pulled through both tunnels 

and fixed. The surgeon has a number of choices in performing the surgery, including graft type, drilling 

technique/location, graft pretension, and fixation method. The connection between these controllable 

factors in conservative and surgical treatments and the resulting knee mechanics is not well 

understood, however it is likely to have significant influence on the treatment outcomes.  

Although the cause of PTOA has not been established, it is theorized that altered cartilage 

loading during functional movement following the injury is a key factor11. In animal studies of ACL 

transection, it has been shown that changes in cartilage contact pressures coincide with the 

development of OA12. Altered cartilage loading is known to occur in humans as well, as dynamic 

imaging studies have shown that ACL reconstructed13,14 and deficient15,16 patients exhibit tibiofemoral 

kinematic differences compared to healthy controls during locomotor movements. In light of these 

findings, recent orthopedic research has focused on improving surgical procedures to restore healthy 

cartilage loading patterns. However, it is not clear how each surgical parameter such as graft placement, 

stiffness and pretension can be altered to achieve this goal. Interestingly, despite similar incidence of 

PTOA, cartilage loading patterns are not typically addressed by conservative treatments.  
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The considerable number of factors involved in both treatments for ACL injury and the 

complexity of the biomechanical interactions that determine functional knee loading make computer 

simulation an important tool to provide insight into reducing the development of PTOA. Further, the 

difficulty of obtaining in vivo measures of soft tissue loading necessitates computer simulation to 

quantify the sensitivity of functional knee loading to treatment interventions. The following section 

provides a background on the existing techniques to quantify knee loading during functional 

movement through simulation.  

 

(Adapted from “Simulation of Soft Tissue Loading from Observed Movement Dynamics” a chapter 

in the Handbook of Human Movement) 

In the musculoskeletal system, soft tissues both mobilize and constrain skeletal motion.  

Muscles generate forces that are transmitted to the skeleton by tendons that can elastically deform.  

Ligaments, connective tissues, and articular cartilage connect the bones, distribute loading, and guide 

joint motion.  Although the relative motion of bones can be measured and analyzed with increasing 

precision 17,18, soft tissue loading is not easily measured in vivo.  Therefore, simulations are often 

required to investigate the mechanical loading and behavior of soft tissues during movement, and the 

resulting effects on other structures within the musculoskeletal system (Fig. 1).  One of the earliest 

musculoskeletal models assessed the contributions of muscle loading to joint injury and bone fractures 

19.  Since then, increasingly complex models have been introduced to characterize musculoskeletal 

tissue mechanics at various scales, including lower-extremity models to assess the contributions of 

muscles to hip, knee and ankle joint loads during walking 20–23 and multiscale models to assess cartilage 

tissue and cellular deformations under functional loads 24,25. 
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Figure 1 Simulation of soft tissue loading from observed dynamics.  Experimental measurements of whole-

body motion and external forces are supplied as inputs to a musculoskeletal simulation, which yields 

estimates of the internal soft tissue (i.e. muscle, ligament, and articular cartilage) loads. 

In biomechanical models of human movement, passive soft tissues are often omitted and 

simplified joints (e.g. hinge, ball-and-socket) are assumed.  These reduced degree-of-freedom (DOF) 

joints impose kinematic constraints to account for the action of soft tissues at each joint.  While 

simplified multibody musculoskeletal models are useful for investigating muscle coordination and 

resultant joint loading, they do not allow estimation of the soft tissue loads needed to constrain joint 

motion.  To address this limitation, high resolution finite element (FE) models have been applied to 

elucidate the complex interactions of morphology, micro-motion, and soft tissue loading for many of 

the joints in the human body.  However, due to their computational complexity, FE simulations are 

typically driven at the joint-level using a combination of prescribed kinematics and external loads.  

Therefore, they inherently cannot account for the interrelationship between whole-body dynamics, 

muscle forces, and joint-level mechanics.  Improved algorithms and computational hardware will likely 

facilitate multi-scale and multi-domain simulations in the future. However, with current techniques it 
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remains exceedingly computationally demanding to incorporate detailed finite element joints into a 

muscle driven simulation framework. To overcome this limitation, concurrent body and joint level 

musculoskeletal simulation techniques have been introduced. 

The concurrent approach ensures dynamic consistency between the simulated full body 

movement and joint-level mechanics, resulting in joint kinematics that evolve naturally from the soft 

tissue forces.  Concurrent simulations avoid the complexity of the FE approaches without requiring 

the oversimplified joint representations of traditional musculoskeletal models.  The ability to describe 

joint motion completely using soft tissue loads and contact between articulating joint surfaces is 

retained by using strand-based ligaments and elastic foundation contact models.  This approach is 

approximately two orders of magnitude faster than a comparable FE simulation26, enabling many more 

simulations to be performed with various individuals, activities, or sets of model parameters.  While a 

FE approach may be used to analyze only a few discrete instants during a dynamic motion27, a 

concurrent approach can be used to simulate the entire motion 28.  Hence, the computational efficiency 

of the concurrent approach enables stochastic (e.g. Monte Carlo) simulations to more fully probe the 

sensitivity of model predictions to inherent uncertainty in measurements and model parameters. 

 In the following sections, the traditional sequential simulation approaches where multibody 

movement dynamics are solved independently of joint mechanics will first be reviewed.  Second, the 

state-of-the-art concurrent simulation approaches to simultaneously solve for muscle forces and internal 

joint mechanics that generate observed whole body movement will be reviewed (Fig. 2). 
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Figure 2 Sequential vs Concurrent modeling of soft tissue loading.  The traditional “Sequential Solution” 

first resolves the muscle forces using a simplified multibody model, then applies these forces to a detailed 

joint model.  While this approach enables the use of complex, high-fidelity joint-level models to assess 

ligament and cartilage loading, it de-couples the muscle forces from joint-level mechanics.  An alternative 

“Concurrent Solution” approach has recently been proposed wherein the muscle forces and joint mechanics 

are solved simultaneously such that the joint kinematics, ligament forces, and cartilage pressures are directly 

coupled with the muscle forces.  In each image, a padlock symbol is superimposed to indicate the presence 

or absence of kinematic joint constraints. In the “Sequential Solution”, the musculoskeletal model is the 

OpenSim Gait 2392 model, and the joint model is the Open Knee finite element model 29,30. The “Concurrent 

Solution” model is described by Lenhart et al. 31. 

Sequential Simulation Techniques 

Traditionally, soft tissue loads are obtained through the sequential solution of one or more 

models at differing physiological scales (Fig. 2).  First, a whole-body musculoskeletal model is used to 

estimate the musculotendon forces and resulting net joint loads necessary to generate the observed 

motion.  This whole-body model typically contains a simplified set of coordinates and constraints for 

each joint (e.g. ball and socket at the hip, hinge at knee and ankle).  Then, a finer-resolution joint-level 

model uses musculotendon loads and joint pose as boundary conditions, and predicts the deformation 

and internal loading of ligaments, connective tissue, and articular cartilage.  This joint-level model may 

include a rigid 32, elastic foundation 33, or finite element representation 34 of articular contact, and 
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varying degrees of kinematic and kinetic constraints.  The challenges associated with both of these 

modeling stages are detailed in the following sections. 

 Perhaps the most difficult challenge in modeling the human musculoskeletal system during 

functional movement is the distribution of forces amongst agonist and antagonist muscles. Each joint 

of the human body is spanned by more muscles than required to control the joint motion, leading to 

the “muscle redundancy problem”.  Furthermore, antagonist muscles that act in opposite directions 

at a given joint are often simultaneously activated; thus, for each joint there is an infinite set of muscle 

forces that will generate an observed motion.  

Early mathematical models resolved muscle redundancy through physiologically-informed 

simplification. Morrison35 outlined a series of hypotheses about knee mechanics which formed the 

basis for his musculoskeletal model of soft tissue loading in the knee. For example, any anterior muscle 

or external force applied to the knee joint was solely resisted by the anterior cruciate ligament (ACL), 

torsional action about the proximal-distal axis of the joint was neglected, and redundancy of knee 

flexor muscles was resolved by comparing experimental muscle excitation (EMG) data to decide 

whether hamstrings or gastrocnemii muscles should be activated at a given instant.  These simplifying 

assumptions captured salient features of knee mechanics, and resulted in a model that provided a 

unique solution for muscle, joint contact, and primary ligament loading during observed movements.  

However, the accuracy of soft tissue load estimates, and implications regarding relationships between 

soft tissue loading and joint kinematics, were limited. 

Subsequent models attempted to include greater flexibility in muscle coordination, by 

optimizing the force distribution at discrete instants in time to minimize an a priori objective function36–

39.  This process is known as static optimization, where the muscle forces needed to generate the 

dynamic joint moments are estimated.  Note that the “static” terminology refers to independent 
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solution of the optimization problem at each time step, as opposed to dynamic optimization which 

solves all time steps simultaneously.  Motor control studies have shown that humans appear to exhibit 

varying degrees of optimality in motor planning and execution40–42; therefore, using optimization to 

emulate physiological distribution of muscle forces is not just mathematically convenient, but also 

desirable37.  Unfortunately, it remains very challenging to establish a true “objective” of the human 

motor control system in performing functional movements.  Many investigations have shown that the 

minimization of the sum of squares or cubes of muscles forces38,39 sometimes weighted by muscle 

volume43 can provide muscle force estimates that are temporally similar to experimental EMG data in 

healthy normal subjects. However, subtle changes to the objective function can lead to dramatic 

changes in estimated joint loads44.  

Many other approaches have been implemented to resolve the muscle force distribution 

problem for observed movements, including: EMG-driven modeling45,46, synergy-based 

optimization47, dynamic optimization48–50, and various tracking algorithms including computed muscle 

control51, neuromusculoskeletal tracking52, and PID control of joints53,54.  These approaches may 

provide advantages over static optimization if, for example, the subject of interest exhibits abnormal 

muscle activation (EMG-driven modeling) or is moving rapidly such that muscle contraction dynamics 

are significant (dynamic optimization).  Any of these methods can be suitable for distributing muscle 

forces in a two-stage sequential modeling approach. 

After the muscle forces are resolved in the first stage of the sequential modeling workflow, 

they are applied to a detailed joint model to calculate soft tissue loading.  With advancements in 

algorithms and computational hardware, these joint level models have become increasingly 

sophisticated in the number of structures modeled and the fidelity of their representations.   
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The most rudimentary models of passive tissue loading employ rigid assumptions for articular 

contact, where the centers of joint rotation, points of contact, and moment arms of each muscle and 

soft tissue are geometrically defined32,35.  Using these models, given a known set of joint kinematics, 

external loads, and muscle forces, it is possible to estimate a limited set of ligament and net contact 

forces. However, in order to formulate a mathematically-determinate system, such models include 

only a small subset of the passive structures crossing a joint, and typically fail to capture any elastic 

deformation of soft tissues. This approach is computationally efficient and may yield reasonable results 

for the overall magnitude of joint contact forces55,56.  However, it fails to yield insight into the 

interaction of kinematics and soft tissue loads because kinematics are prescribed prior to the soft tissue 

analysis.   

A more nuanced description of joint mechanics is enabled by the use of a rigid body, 

penetration-based “elastic foundation” model for articular contact33,57 and strand based ligaments58.  

In the elastic foundation model, each articular surface is discretized into a surface mesh of small 

polygonal elements with independent springs acting normal to each face.  When contact occurs, the 

interpenetration of rigid mesh surfaces is used to compute spring deflection, and thereby pressure, for 

each surface element.  Strand based ligament models use bundles of nonlinear springs to represent the 

elastic contribution of ligaments to joint mechanics.  Using these approaches, joint models where all 

six degrees of freedom are controlled by the combined action of muscle, ligament, and articular contact 

loads have been developed59,60.  However, an elastic foundation model only provides surface contact 

pressures, and cannot resolve internal tissue-level stresses and strains.  

Finite element (FE) analysis is a powerful method for quantifying the mechanics of ligament, 

capsule, and cartilage tissues61,62.  The fundamental principal of FE analysis is to discretize complex 

tissue geometries into a set of small three-dimensional elements that can be analyzed using numerical 
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solution techniques.  Finite element modeling enables studies such as the sensitivity of passive knee 

joint mechanics to ACL reconstruction graft parameters63,64, the effect of a menisectomy on knee 

cartilage stress65, the relationship between focal cartilage defects and osteoarthritis66, or evaluations of 

the stability of the hip67 or glenohumeral68 joints.  Finite element modeling can even be used to 

investigate the importance of depth-wise changes in mechanical structure within a thin layer of 

articular cartilage69, or to simulate changes in cartilage stiffness and strength due to variation in 

nanoscale cross-link density between tropocollagen molecules70.  The primary limitation on the use of 

FE models in biomechanical studies is computational cost.  For example, a finite element 

representation of the knee, including poroviscoelastic properties for the cartilage, may take days or 

even weeks to solve under quasi-static conditions61.  Thus, in the sequential modeling workflow, joint 

mechanics are often resolved only at specific instances in a movement.  

While the sequential approach has yielded valuable insight into the magnitudes of soft tissue 

loading, and provides a straightforward methodology to simulate soft tissue loading across multiple 

scales, several limitations exist.  In the sequential approach, muscle forces are often computed to 

equilibrate only a subset of the available degrees of freedom.  However, a different solution will be 

obtained if additional degrees of freedom are considered71,72.  Perhaps more importantly, the sequential 

modeling approach solves the full-body and joint-level dynamics separately, neglecting the interaction 

between scales and thereby failing to account for inherent coupling.  As a result, it does not allow 

muscle forces to be affected by subtle changes in joint kinematics which arise via deformation of 

ligament, capsular, and cartilage tissues.  The human neuromuscular system modulates muscle forces 

to control joint rotations and translations; muscle forces therefore arise in proportion with their 

capability to induce accelerations along each degree of freedom.  But the contribution of a muscle to 

accelerating each degree of freedom is not static; it changes dynamically with the pose of a joint.  Using 

the knee for example73, quadriceps forces are directly affected by the position of the patella.  However, 
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patellar position is influenced by translation of the tibiofemoral joint as well as strain in the patellar 

tendon, and these parameters vary with quadriceps force.  Thus, to analyze soft tissue loading during 

dynamic motions, it is imperative to ensure that joint kinematics are coupled with soft tissue loads. 

The coupling between dynamic motion, muscles and soft tissue loads is likely amplified in cases where 

soft tissue injury or disease exists, and compromises the native function of the joint. 

Concurrent Simulaton Techniques 

To capture the interactions between body scale musculoskeletal behavior and joint scale soft 

tissue mechanics, the dynamics of each scale must be coupled.  For example, coupled simulations are 

needed to investigate how one may alter neuromuscular coordination to adapt for ligament damage 

that compromises joint stability.  However, concurrent solution of the neuromuscular control and 

joint behavior necessitates different modeling and simulation techniques than are required for 

sequential simulation approaches. 

 Ideally, a soft tissue FE representation of the joint mechanics would be solved within a 

multibody muscle-driven simulation, thereby allowing for characterization of the tissue deformation 

and stress patterns.  However, the practical challenges and computational demands of simultaneously 

solving multibody dynamic and finite element models has generally precluded this approach74.  To 

avoid the computational bottle neck, investigators have either used surrogate approaches to limit the 

number of FE model calls, or opted for simpler elastic foundation models and strand-based structures 

to represent articular cartilage contact and ligaments, respectively (see Table 1 for summary of 3D 

knee models that use such approaches). 
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Table 1 Summary of three-dimensional knee models in literature.  Included models contained: all three 

bones (Tibia, Femur, Patella), both tibiofemoral (TF) and patellofemoral (PF) joint contact, a six-degree-of-

freedom (DOF) tibiofemoral joint, both muscle and contact forces, and high-fidelity contact surfaces. 

Year(s) Authors Geometry  Meniscus Contact Model Solution 
Method 

Muscle Control Motions 

1989 Essinger et al. TKA n/a Elastic Foundation Sequential Passive Springs Flexion-
Extension 

1998a; 1998b Kim Native - Elastic Foundation (TF) 
/ Rigid (PF) 

Sequential Constant Force Flexion-
Extension 

1998a; 1998b Pandy et al NativeT,P - Elastic Foundation (PF) 
/ Rigid (PF) 

Sequential Passive; Constant 
Force 

Flexion-
Extension 

2001 Piazza and Delp TKA n/a Rigid Surfaces Sequential EMG-driven Step-up 

2004 Caruntu and Hefzy NativeT - Elastic Foundation Sequential Constant Force Flexion-
Extension 

2004; 2005; 2006 Shelburne et al.  Native Posterior 
Shear Force 

Elastic Foundation Sequential Dynamic 
Optimization 

Gait, Vertical 
Jump 

2007; 2009; 2011 Shin et al. Native - Elastic Foundation Concurrent Passive Springs Single Leg 
Landing 

2010 Dhaher et al. Native Finite Element Finite Element Sequential Constant Force Extension 

2010; 2012; 2013 Guess et al. Native Multibody 
Deformable 

Elastic Foundation Concurrent PD Controller Squat, Gait 

2013 Hast et al. TKA n/a Elastic Foundation Sequential  Dual Joint 
Optimization 

Gait 

2013; 2014 Stylianou et al., 
Guess et al. 

TKA n/a Elastic Foundation Concurrent PID Controller Squat, Toe-
Rise, Gait 

2014, 2014, 2016 Adouni et al., 
Marouane et al. 

Native Finite Element Finite Element Concurrent Static 
Optimization 

Gait (6 
instants) 

2014 Thelen et al. TKA - Elastic Foundation Concurrent Computed Muscle 
Control 

Gait 

2015 Lenhart et al. Native - Elastic Foundation Concurrent Computed Muscle 
Control 

Flexion-
Extension 

2015, 2016 Marra et al., Chen et 
al. 

TKA n/a Elastic Foundation Concurrent Force-Dependent 
Kinematics 

Gait 

2016 Halonen et al. Native Finite Element Finite Element Sequential PID Controller Gait 

2016 Smith et al. (a,b) Native/TKA - Elastic Foundation Concurrent COMAK Gait 

2016 Eskinazi et al. TKA n/a Surrogate Finite 
Element 

Concurrent PD Controller Flexion-
Extension 

TGeometry assumed planar tibia surface 
PGeometry assumed planar patella surface 

Surrogate approaches can be used to generate a numerical input-output relationship for a 

complex finite element model that, following calibration, can be queried efficiently within a dynamic 

simulation.  For example, Lin et al. 92,93 was able to pre-compute a regression relationship between 

joint kinematics and contact loads for a finite element knee model over a large range of anatomically 

reasonable kinematic poses.  In a subsequent multibody dynamic simulation, they showed that the 

regression equations could be queried in place of solving the FE model, with negligible computational 

cost and relatively close adherence to the FE solutions.  An alternative “adaptive surrogate modeling”, 

or “lazy-learning”, scheme has also been proposed94, wherein a FE model is still used to generate a 

surrogate regression model, but the FE model is only solved when the input states differ significantly 

from previously-encountered states within a dynamic simulation.  For situations where the model 
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parameters are well-defined, surrogate modeling approaches can afford significant computational 

savings.  However, any alteration in finite element model parameters or geometry would require re-

calibration of the surrogate regression equations, which can make it computationally demanding to 

fully assess sensitivities of the model outcomes.  

The alternative approach used to represent joint mechanics within a dynamic simulation uses 

strand-based ligaments and an elastic foundation articular contact model.  As described above, the 

elastic foundation model solves for the contact pressure on each face in a surface mesh based on the 

local penetration depth.  In doing so, the pressure on each face is solved independently, making the 

problem more computationally tractable within the context of a whole body dynamic simulation.  

Advanced algorithms have recently been introduced which use bounding volume hierarchy techniques 

developed by the computer graphics field to further improve the speed of elastic foundation 

implementations95.  Strand-based ligaments also provide vastly improved speeds compared to FE 

models by representing ligaments as bundles of independent one-dimensional nonlinear springs.  

Six degree of freedom, multi-body joint models can greatly enhance the information obtained 

in a musculoskeletal simulation of movement.  Traditionally, movement simulation models use 

simplified joints (e.g. hinge or ball-and-socket) in which artificial mathematical constraints restrict 

secondary motion.  In contrast, a six degree of freedom joint model directly includes representations 

of the soft tissues (ligaments, cartilage) that span a joint, and thus can provide estimates of the 

physiological loads needed to constrain motion.  A number of investigators have demonstrated the 

viability of simulating dynamic six degree of freedom joint behavior during passive and simple 

movement conditions (Table 1, concurrent solution method).  However, six DOF joints introduce 

significant complexity into calculation of the neuromuscular control needed to generate active, multi-

joint movement.  Conventional tracking control algorithms are predicated on linked-segment models 
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with constrained joints.  With constrained joints, the capacity of individual muscles to transmit joint 

loads and induce whole body accelerations is readily calculated, and this information is then used to 

compute controls that generate a desired movement 51,52,96.  In a six degree of freedom joint with soft 

constraints, muscle loads are no longer instantaneously transmitted across a joint, complicating the 

calculation of a muscle’s capacity to induce acceleration along a specific DOF.  This makes it 

challenging to use static optimization approaches to resolve muscle redundancy at a discrete time step 

within a dynamic simulation.  Dynamic optimization is a powerful alternative for determining a muscle 

activation patterns that generate a desired movement 48,50,97,98, but dynamic optimization is much more 

computationally expensive and as a result not widely used to simulate subject-specific movement. 

Recently, two different research groups have introduced approaches for computing muscle 

coordination patterns and six degree of freedom joint mechanics that are dynamically consistent with 

observed movements28,99,100.  These studies define a set of primary degrees of freedom (DOF) which 

can be readily and reliably measured using standard gait analysis techniques (e.g. pelvis translations 

and rotations, hip rotations, tibiofemoral flexion, ankle flexion).  A set of secondary DOF is also defined, 

which consist of kinematics (e.g. tibiofemoral translations and non-sagittal rotations) that are poorly 

measured with conventional motion capture101,102.  A multibody musculoskeletal simulation is then 

performed where the primary degrees of freedom track the observed movement, and the secondary 

DOF evolve naturally from the soft tissues acting within a six degree of freedom joint.  Muscle force 

distribution within these algorithms99,100 is resolved using numerical optimization at each time frame 

to minimize an assumed cost function, such as the sum of weighted muscle activations squared39,43.  

For relatively slow activities such as human gait, these approaches have been shown to yield patterns 

of muscle activation that are similar to experimental EMG, and yield reasonable predictions of in vivo 

knee contact forces28,103.  Furthermore, these methods are not restricted to knee joint analysis.  The 
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method of Andersen et al.100, called force-dependent-kinematics (FDK), has been recently used to 

examine joint mechanics at the spine104, shoulder105, wrist106, and hip107 joints.   

The following chapters of this dissertation present the Concurrent Optimization of Muscle 

Activations and Kinematics (COMAK) algorithm, which is capable of simulating full six degree of 

freedom tibiofemoral, patellofemoral, and meniscal mechanics during gait 28,108–110. The COMAK 

algorithm is demonstrated using a multibody knee model with elastic foundation contact and strand 

based ligaments to study the effect of ACL injury and treatments on knee mechanics during walking. 
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 This dissertation had three specific aims involving the creation of a knee model to investigate 

surgical and conservative treatment of anterior cruciate ligaments (ACL) injuries. The chapters 

constituting the body of this dissertation are organized as a collection of five manuscripts, three (1, 3, 

4) of which have been published and two of which will be submitted shortly (2, 5). Chapter 1 

introduces a collision detection algorithm which enables the use of elastic foundation articular contact 

models within dynamic simulations of movement. Chapter 2 introduces the Concurrent Optimization 

of Muscle Activations and Kinematics (COMAK) simulation framework to predict muscle forces and 

internal joint mechanics during movement. Chapter 3 applies COMAK to study the effect of 

component placement and soft tissue release on knee function in total knee replacement. It also 

provides validation by comparing predicted joint contact forces to in vivo measurements from an 

instrumented implant. Chapter 4 applies COMAK to study the sensitivity of knee mechanics during 

walking to ligament stiffness and pretension. Chapter 5 applies COMAK to study the influence of 

neuromuscular coordination on knee mechanics during walking in the healthy, ACL deficient, and 

menisci deficient knee.  

Motivation:  

 Assessing the influence of treatments for ACL injury on soft tissue loading is complicated by 

the complexity of the biologic and mechanical systems that interact during functional movements. 

Computer simulation has potential to provide valuable insight into the sensitivities of cartilage and 
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ligament loading to gait dynamics, muscle coordination, articular geometries, and soft tissue 

properties. However, existing simulation frameworks were unable to capture the dynamic coupling 

between limb dynamics and joint mechanics, or assess the sensitivity of clinically relevant model 

parameters in a systematic fashion.   

Outcome: 

 This dissertation introduced a probabilistic simulation framework to predict muscle forces, 

ligament forces, and cartilage loading during walking. The Concurrent Optimization of Muscle 

Activations and Kinematics (COMAK) simulation routine provides a novel methodology to simulate 

knee mechanics from motion capture and ground reaction measurements (Chapter 1 & Chapter 2). 

The application of high throughput computing (HTC) enables probabilistic analyses that enable 

musculoskeletal simulations to be better leveraged to provide more clinically relevant insight (Chapters 

2,3,4&5). The predictive capacity of COMAK was evaluated by comparing predicted joint contact 

forces against in vivo measurements from an instrumented implant (Chapter 3). Through my work and 

collaborations, we have demonstrated the ability to use the modeling framework to predict 

tibiofemoral and patellofemoral mechanics during a wide variety of movements including: walking1,2, 

running3, stair-climbing, lunging, and jumping. The framework enables parametric variation of 

cartilage properties, ligament properties, articular geometries, and neuromuscular coordination 

strategies. It has been applied to study ACL injury2, total knee replacement1, cartilage defect repair and 

rehabilitation, osteoarthritis, and pediatric orthopedic surgeries for gait disorders4.   
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Motivation: 

 Restoration of healthy cartilage loading patterns following ACL reconstruction is important 

to mitigate the development of osteoarthritis5. Current ACL reconstructions do not completely restore 

knee mechanics during functional movements, however it is not understood how surgical techniques 

could be altered to provide better outcomes. Computer simulation provides potential to systematically 

vary surgical parameters such as graft stiffness, pretension, and tunnel location. Additionally, it can 

provide cause-effect insight to explain correlations found experimentally.  

Outcome: 

 The simulation framework developed in Aim 1 was applied to study the influence of ACL 

graft stiffness and pretension on knee mechanics during walking (Chapter 4). The framework was also 

used to study ACL graft tunnel location. Recently, we found a correlation between the sagittal plane 

angle of the graft in an extend posture and knee kinematics and cartilage contact measured with 

dynamic MRI. The knee model framework was applied to demonstrate causality in this scenario even 

in the presence of uncertainty due to graft stiffness and pretension. The COMAK simulation routine 

was then used to extend this finding to walking. When variability in tunnel placement, graft stiffness 

and pretension were simulated, the sagittal plane graft angle was the most influential metric in 

determining the predicted knee mechanics during walking (Appendix A). 
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Motivation:     

 Current conservative treatments for ACL injury attempt to restore knee stability through 

rehabilitative treatment. However, it is unknown whether this treatment can restore cartilage loading 

to normal patterns during functional movement, which has important implications for the long-term 

health of the knee. Musculoskeletal computer simulation provides opportunity to establish whether it 

is mechanically feasible to restore cartilage loading patterns in an ACL deficient knee, and provide 

insights into the muscles that might be trained to achieve this effect.  

Outcome: 

 The probabilistic simulation framework developed in Aim 1 was applied to assess the effect 

of variations in muscle coordination strategy on healthy knee mechanics during walking (Chapter 2). 

A similar approach was then applied to study ACL deficient and menisci deficient knees (Chapter 5). 

The solution spaces of the muscle redundancy during walking were compared for these three 

conditions to establish that no neuromuscular coordination strategy exists to restore cartilage loading 

in an ACL deficient knee if the limb dynamics are unchanged. Furthermore, ACL loading could not 

be restored to normal in the menisci deficient knee.  
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Colin R. Smith, Kwang Won Choi, Dan Negrut, Darryl G. Thelen 
(Published in Computer Methods in Biomechanics and Biomedical Engineering: Imaging and 

Visualization) 

The objective of this study was to assess the use of an advanced collision detection algorithm 

to simulate cartilage contact pressure patterns within dynamic musculoskeletal simulations of 

movement. We created a knee model that included articular cartilage contact for the tibiofemoral and 

patellofemoral joints. Knee mechanics were then predicted within the context of a dynamic gait 

simulation. At each time step of a simulation, ray-casting was used in conjunction with hierarchical 

oriented bounding boxes (OBB) to rapidly identify regions of overlap between articulating cartilage 

surfaces. Local cartilage contact pressure was then computed using an elastic foundation model.  

Collision detection implemented in parallel on a GPU provided up to a 10x speed increase when using 

high resolution mesh densities that had >10 triangles/mm2. However, pressure magnitudes converged 

at considerably lower mesh densities (2.6 triangles/mm2) where CPU and GPU implementations of 

collision detection exhibited equivalent performance. Simulated tibiofemoral contact locations were 

comparable to prior experimental measurements, while pressure magnitudes were similar to those 

predicted by finite element models. We conclude the use of ray-casting with hierarchical OBB for 

collision detection is a viable method for simulating joint contact mechanics in human movement. 
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 The loading of articular cartilage during functional movement is important to consider when 

investigating cartilage health and pathology. Because cartilage loading cannot be directly measured in 

vivo, computational modelling is a valuable tool to investigate dynamic cartilage loading and provide 

insight into surgical treatments and rehabilitation protocols. However, the prediction of cartilage 

loading within multibody movement simulations presents a complex computational problem. While 

finite element analyses (FEA) are conventionally used to estimate cartilage tissue stress, they remain 

too computationally expensive to solve within the context of a movement simulation1,2. Traditional 

multibody musculoskeletal models resort to simplified kinematic joints to reduce complexity3,4, but 

these intrinsically ignore the load dependent behaviour of the joint and cannot provide estimates of 

cartilage loading. As a result, elastic foundation models  have been introduced to efficiently model 

joint contact within whole body simulations of movement5–7.  

In elastic foundation models, cartilage is considered an elastic tissue bonded to a rigid bone 

substrate. The articulating cartilage geometries are represented by surface meshes which can 

interpenetrate. Pressure on each element in contact is computed independently of neighbouring 

elements based on the local overlap distance and the thickness of the cartilage tissue. The resulting 

model of the cartilage tissue layer is mechanically equivalent to a bed of independent nonlinear 

compressive springs distributed over rigid bones7. Elastic foundation approaches have been used to 

study contact mechanics in various diarthrodial joints including the hip8, knee7,9–11, and ankle9,12.   

Although elastic foundation models are substantially faster than FEA, in practice the detection 

of overlapping faces of high resolution cartilage meshes remains a computational bottleneck. This task 

becomes remarkably burdensome within a dynamic simulation of movement, where collision 

detection and penetration depth calculations are repeated a minimum of once per time step5,13. A brute 
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force approach to collision detection evaluates penetration between every pair of elements of two 

surfaces, resulting in an O(n2) complexity. Prior biomechanical studies have reduced the 

computational demand by only searching physically plausible contact regions7,14. Meanwhile, the 

computer graphics community has introduced a number of general purpose algorithms to accelerate 

collision detection of objects represented by polygon meshes15. One approach uses ray-casting in 

conjunction with hierarchical oriented bounding boxes (OBBs) to efficiently identify overlapping 

regions of two polygon meshes16.  The ray-casting OBB algorithm provides local overlap depth 

estimations making it well suited for joint contact. Additionally, it can be implemented in parallel, and 

thus in theory made substantially faster when run on a parallelized graphics processor unit (GPU)17. 

However, it remains unclear what mesh resolution is required to obtain reliable cartilage contact 

pressures and whether the increase in computational speed resulting from a GPU implementation 

outweighs the memory transfer overhead.  

The objective of this study was to assess the feasibility of calculating cartilage contact pressures 

within a multibody dynamic simulation of movement using ray-casting with OBBs for collision 

detection. As a test case, knee cartilage contact pressures were simulated during walking using elastic 

foundation contact models. We investigate the computational efficiency of CPU and GPU 

implementations of collision detection and also assess the effects of mesh density on pressure 

magnitudes and contact areas. 
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Knee Model 

A multibody knee model was developed from magnetic resonance (MR) images of the right 

knee of a healthy young adult female (age = 23 years, height = 1.65 m, mass=61 kg). Development 

and validation of the knee model are detailed elsewhere18. Briefly, bone and cartilage surface 

geometries of the tibia, femur and patella were manually segmented from the MR images and 

converted to triangulated surface meshes (MIMICS, Materialise Group, Leuven, Belgium). The 

origins, insertions and paths of 14 ligaments were also segmented and represented as bundles of 

nonlinear springs. The knee model allowed for six degree of freedom (DOF) tibiofemoral and 

patellofemoral motion. The knee was integrated into a generic lower extremity musculoskeletal 

model19, which included 44 muscles acting about the hip, knee and ankle joints (Figure 1). The full 

model was implemented in SIMM20 with the Dynamics Pipeline (Musculographics Inc., Santa Rosa, 

CA) and SD/Fast (Parametric Technology Corp., Needham, MA) used to generate the code describing 

muscle-tendon dynamics and the multibody equations of motion. 

 

Figure 1 Model development: a) Cartilage, bone and ligament geometries were manually segmented from 

MR images b) Bone and cartilage geometries were converted to triangulated surface meshes c) Ligaments 

were represented as bundles of nonlinear springs spanning from origin to insertion d) The knee model was 

integrated into a generic lower extremity model19. 
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Contact Pressure 

 At each time step of a simulation, cartilage contact pressures were calculated using an elastic 

foundation model. Cartilage contact was determined by the overlap of cartilage surface meshes fixed 

to the femur, tibia and patella segments. These segments were positioned in accordance with the 

current system state. The contacting triangles of cartilage meshes were determined using an OBB 

collision detection algorithm (Section 2.3).  

The contact pressure (𝑝) on an individual triangle in each cartilage mesh was calculated 

according to elastic foundation theory developed for articular cartilage7: 

 
𝑝 = −

(1 − 𝑣)𝐸

(1 + 𝑣)(1 − 2𝑣)
ln(1 −

𝑑

ℎ
) 

(1) 

where 𝐸 is the cartilage elastic modulus, 𝑣 is the cartilage Poisson’s ratio, 𝑑 is the local overlap depth 

and ℎ is the local cartilage thickness. 𝐸 and 𝑣 were assumed to be 5 MPa and 0.45 respectively21,22. 

The calculation of 𝑑 is defined in the following section (Eq. 2). Local cartilage thickness (ℎ) was 

computed by casting a ray from each triangle in the cartilage mesh towards the underlying bone mesh. 

The ray-triangle intersection was determined using the collision detection algorithm and Eq. 2 

determined the local thickness. 
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Collision Detection 

 

Figure 2 Collision Detection: A ray is cast normal to each triangle in the contact mesh. A ray-intersection 

test is performed for each level in the oriented bounding box (OBB) hierarchy until a leaf node is reached 

and the contacting triangle in the target mesh is determined. 

The pressure calculation required local cartilage overlap depth values for each contacting 

triangle in the surface meshes. Prior to the simulation, an OBB tree was constructed for the femoral 

cartilage geometry using the Proximity Query Package (PQP) software23. The OBB tree was 

constructed using a top down approach, where the parent box in the hierarchy encloses the entire 

mesh and is recursively subdivided to generate child OBBs.  The lowest level of the OBB tree is a leaf 

node, which consists of a bounding box fit around a single triangle. The OBBs were oriented to the 

principal vectors of the covariance matrix calculated from the positions of the enclosed triangle 

vertices to ensure a tight fit24.  

For each pair of contacting cartilage surfaces, we defined contact (tibia/patella) and target 

(femur) surfaces. To check for contact, a normal ray was cast in both directions from the centre of 

each triangle in the contact meshes. A ray-OBB intersection test determined if the ray intersected the 

parent box of the OBB tree25. If no intersection occurred, the triangle was not in contact and the test 

was terminated. If the ray intersected the parent OBB, then a ray-OBB intersection test was performed 

for each child OBB in the next sub-hierarchy. This process was repeated recursively until a leaf node 

was reached, resulting in a pair of potentially contacting triangles (Figure 2).  
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The depth of penetration (𝑑) for each triangle pair was computed using: 

 
𝑑 =

(𝑃𝑡
⃑⃑  ⃑ − 𝐶𝑐

⃑⃑⃑⃑ ) ∙ 𝑛�̂�

𝑛�̂� ∙ 𝑛�̂�
 (2) 

where 𝑃𝑡
⃑⃑  ⃑ is the intersection point on the target triangle (femur), 𝐶𝑐

⃑⃑⃑⃑  is the centre of the ray-casting 

triangle (contact body), 𝑛�̂� is the target triangle unit normal vector and 𝑛�̂� is the contact triangle unit 

normal vector (Figure 3). The intersection point on the target triangle was used for the distance 

calculation instead of the triangle centre to insure C0 continuity when the model pose changed and 

the ray intersected a neighbouring triangle. A positive value of 𝑑 indicated the triangles were contacting 

and pressure was computed.  

 

In practice, we included several 

constraints on the algorithm which 

accelerated its computational performance 

and robustness. A maximum distance 

threshold was defined to restrict ray 

intersections to a feasible region. In cases 

of extreme concavity where multiple OBBs 

were intersected, each path was traced 

through the OBB hierarchy. If this resulted 

in more than one intersected triangle, only the closest was used. Finally, to exploit the small changes 

in segment poses between time steps, a ray-intersection test was performed with the contacting triangle 

from the previous time step before progressing through the OBB tree. 

Figure 3 Penetration Depth: The local depth of penetration 

(d) is defined as the normal distance from the center of a 

contact mesh face to the point of intersection with the 

target mesh. 
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GPU Implementation 

 The collision detection algorithm was implemented both on a Central Processing Unit (CPU: 

AMD Phenom II X6 1055 T Processor 2.8GHz, with 8GB Main RAM) and a Graphics Processing 

Unit (GPU: NVIDIA GeForce GTX 560Ti with 1GB Graphics RAM). The OBB tree was 

constructed on the GPU using the gProximity software26 which first groups the triangles into 

hierarchies, then fits OBBs to these groups in parallel using the same principal component definition 

as the CPU17. The GPU implementation of the collision detection relied on Compute Unified Device 

Architecture (CUDA)27 to perform all ray-OBB intersection tests of a single hierarchy level in parallel 

on 384 CUDA cores. 

Neuromuscular Simulations of Walking 

 To assess the performance of the contact algorithm, we used the musculoskeletal model to 

simulate tibiofemoral cartilage contact pressures during walking. The trajectories of reflective markers 

placed over bony landmarks, and ground reaction loads were recorded while the subject walked 

overground at a preferred speed in a motion analysis laboratory18. At each frame of the gait cycle, a 

global optimization inverse kinematics routine determined pelvis translations, pelvis rotations, hip 

angles, knee flexion angle, and ankle angle that minimized the sum of squared differences between 

model marker locations and measured marker locations. At this stage, secondary tibiofemoral and all 

patellofemoral degrees of freedom were assumed to be a constrained function of tibiofemoral flexion, 

with these functions based on our simulated passive knee behaviour.  

A computed muscle control (CMC) algorithm was used to compute the muscle excitations needed to 

drive the model to track the measured hip, knee and ankle kinematics, while the pelvis motion was 

prescribed to the measured coordinates5 (Figure 4). CMC is a feedforward-feedback controller that 

uses the error between the simulated and measured kinematics at the current time step to compute 
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muscle excitations required to generate the measured the joint angle trajectories. At each time step, 

the current pose of the femur, tibia and patella were used to calculate the ligament forces and cartilage 

contact pressures. Measured ground reactions were applied directly to the feet. The computed muscle 

excitations were applied to the model and the equations of motion integrated to the next time step 

where the process was repeated. All tibiofemoral kinematics except flexion and all patellofemoral 

kinematics were allowed to evolve naturally as a result of the calculated muscle forces, ligament forces 

and cartilage contact pressures. 

 

Figure 4 Neuromuscular Simulation: A computed muscle control (CMC) algorithm was used to modulate 

the lower limb muscle excitations such that the simulation closely tracked the measured hip, knee, and ankle 

angles. At every time step, the tibia, patella, and femur positions were used to ascertain the tibiofemoral 

and patellofemoral contact and ligament forces. These forces were then applied within the forward dynamic 

simulation of the neuromusculoskeletal model. 

Performance Tests 

 We performed a series of tests to assess the influence of the cartilage mesh density and 

processor implementation on the contact pressure computation time and contact pressure patterns. 

Computation times needed to calculate the contact pressures were evaluated for the CPU and GPU 

implementations. These timed computations were performed at a single frame of the walking 

simulations, with the femur and tibia positions set to correspond to the second peak of the 

tibiofemoral loading during stance. Computation times were repeated for cartilage surface mesh 
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resolutions varying from 0.02 triangles/mm2 to 144 triangles/mm2. Re-meshing was performed using 

a proprietary algorithm which ensures uniform tessellation (Geomagic, 3D Systems, Rockhill, SC). 

Reported GPU times included the transfer time between the main memory in the host and the global 

memory in the GPU. Additionally, we compared mean pressure, contact area and centre of pressure 

(COP) to assess the mesh density for which the cartilage surfaces generated converged values. 

 

Neuromuscular Simulation of Walking 

 

Figure 5 Tibiofemoral Contact: Simulated cartilage contact pressure and area on the medial and lateral 

compartments of the tibial plateau over a gait cycle. 
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The nominal muscle-actuated gait simulation closely tracked the measured kinematics (RMS 

error <1.0o for all joints). Simulation of one gait cycle took 120 minutes to generate using the CPU 

contact detection implementation and a mesh density of 2.6 triangles/mm2. Net tibiofemoral contact 

force patterns exhibited the characteristic double-peak during stance, with the majority of the force 

passing through the medial compartment. The mean pressure on the medial tibial plateau showed a 

similar trend with a double peak during stance (1st peak = 6.7 MPa, 2nd peak = 6.5 MPa), and reduced 

contact pressure during swing. The mean pressure on the lateral tibial plateau peaked at heel strike 

(5.0 MPa) and then remained relatively constant through the rest of the gait cycle (Figure 5). Contact 

on the medial compartment moved to the posterior portion of the plateau at the first peak, then to 

the anterior region of the plateau for the second peak. The medial centre of pressure (COP) translated 

more than the lateral COP in the anterior-posterior direction over the gait cycle (Range: medial = 14.7 

mm, lateral = 10.8mm). 
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Sensitivity to Mesh Density 

 
Figure 6 Mesh Convergence: Tibiofemoral pressure calculations were repeated at a single pose with mesh 

densities varying from 0.02 to 144 triangles/mm2. Predicted pressure, area and centre of pressure (COP) 

values were within 1% of the converged value at a mesh density of 2.6 triangles/mm2. 

The mean pressure, contact area and centre of pressure metrics all converged to consistent 

values as mesh density was increased. A mesh density of at least 2.6 triangles/mm2 was required for 

these metrics to fall within 1% of the converged values (Figure 6). 
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Computation Times 

Solution time for contact detection 

at a single pose increased with increasing 

mesh density for both the CPU and GPU 

implementations. The GPU 

implementation of the contact detection 

algorithm resulted in similar computation 

times to the CPU implementation at mesh 

densities up to approximately 10 

triangles/mm2. Thereafter, the rate of 

increase in computation time was greater 

for the CPU implementation (Figure 7). 

At the highest tested mesh density of (144 

triangles/mm2), the GPU implementation 

was 10x faster than the CPU 

implementation. 

Computing cartilage contact pressures within a dynamic simulation requires that collision 

detection is performed at every time step. However, collision detection is computationally demanding 

when high resolution cartilage surface meshes are used. In this study, we demonstrate that the use of 

ray casting with oriented bounding boxes can accelerate collision detection, allowing for the simulation 

of tibiofemoral and patellofemoral cartilage contact pressures within a dynamic simulation of gait. The 

new computational approach allows for investigations of causal relationships between ligament 

Figure 7 Computation Time: A comparison of computation 

times for tibiofemoral pressure calculation at a single pose 

(2nd peak of tibiofemoral loading) for the CPU and GPU 

implementations of the collision detection algorithm. GPU 

times include the transfer time between the main memory in 

the host and the global memory in the GPU. CPU and GPU 

computation times were similar for cartilage mesh densities 

lower than ~10 triangles/mm2. 
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properties, contact pressures and muscle coordination to be performed13, which have great importance 

to both orthopaedic and rehabilitative medicine.  

Our gait simulation predicted the characteristic bimodal loading of the tibiofemoral joint 

during the stance phase of walking. The medial contact pressures were higher than on the lateral side, 

and the medial centre of pressure progressed anteriorly from the first peak of tibiofemoral loading to 

the second peak during stance. In vivo tibiofemoral contact pressures during gait have not been 

measured, thus direct validation is not feasible. However, the simulated pressure patterns agree 

favourably with image-based measures of tibiofemoral contact patterns during normal gait. Liu et al. 

measured cartilage deformations of 7 to 23% during the stance phase of gait, with larger anterior-

posterior excursions and contact areas on the medial tibial plateau than on the lateral plateau 28. Our 

gait simulations show similar trends; our medial contact area estimates area are close to Liu et al.’s 

measurements, however our lateral contact area tend to be ~50% lower. 

 Collision detection has been extensively studied in the computer graphics literature, yet the 

existing algorithms have not been leveraged in biomechanical modelling due in part to their general 

purpose formulation14. We implemented a popular computer graphics approach that combines ray-

casting and a hierarchical structure of oriented bounding boxes to identify overlapping faces of two 

cartilage surfaces. While alternate collision detection algorithms exist that rely on hierarchical 

structures of various bounding volumes, the OBB is one of the best suited for the joint contact 

application. Other bounding volumes such as spheres and axis-aligned bounding boxes (AABB) 

perform fast intersection tests and do well in “rejection tests” when meshes are far apart. However, 

these algorithms produce looser fitting bounding boxes which result in more “false positives”, where 

a ray intersects the bounding volume, but none of the included triangles. For joint contact applications 

where congruent meshes are in close proximity, the OBB excels because it fits tightly around the 
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collection of triangles, yet still allows for fast intersection tests24,29. For a mesh density of 2.6 

triangles/mm2, we found the OBB approach was over three orders of magnitude faster than a brute 

force approach that checks for contact between all face pairs between two surfaces. 

 Rather than employ general purpose algorithms, prior biomechanical modelling studies have 

done well to exploit knowledge of the application, such as physically plausible joint behaviour to 

improve collision detection. Bei and Fregly restricted collision detection to neighbours of previous 

contact patches, since relatively small changes in pose occur between simulation time steps7. Arbabi 

and colleagues pre-processed cartilage surfaces into spatial bins, which rely on the relative proximity 

and nature of the movement between cartilage surfaces to reduce the number of computations14. We 

also found that knowledge of small joint motion between time steps could be used to speed up our 

algorithm. In particular, considerable speedup was achieved by first performing a ray-intersection test 

with the contacting triangle from the previous time step before repeating the OBB checks. 

Additionally, although the algorithm could work with closed meshes, we used only the contacting 

surface of the cartilage to reduce the number of triangles of potential triangle contacts. When 

implemented in this way, CMC generated gait simulations in ~120 minutes using the minimum mesh 

density required to achieve converged pressure metrics. While considerably longer than using 

simplified joints 30, the simulations provide considerably more biomechanical information such as 

ligament loading, ligament stretch, and cartilage contact pressure patterns13. 

Elastic foundation models treat each face of a cartilage surface mesh independently, which 

allows them to be easily parallelized on a GPU. We found that a GPU collision detection algorithm17 

was 10x faster than a serial CPU implementation when using very high resolution meshes (144 

triangles/mm2).  However, contact pressure and area converged at lower resolution meshes (2.6 

triangles/mm2), where the GPU and CPU implementations exhibited comparable computation times. 
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The limited computational performance gains at these mesh densities is likely due to the overhead 

costs associated with data transfer that arises in GPU scientific computing. The GPU implementation 

may provide benefit for applications which require meshes with large number of faces such as skin-

prosthesis interfaces31,32 or foot-ground contact33.   

 There are several limitations to consider in this work. First, we did not include a meniscus in 

our knee model, which is well recognized to distribute pressure in the tibiofemoral joint. Recent 

studies have introduced discretized meniscus models34 that would be well suited to incorporate into 

our multi-body knee model in the future and will further increase the need for fast contact detection. 

Additionally, our pressure calculations assumed linearly elastic cartilage tissue behaviour, which clearly 

ignores viscoelastic effects. The effects of viscoelasticity may be negligible when considered in context 

of the assumptions required for the elastic foundation model. While the elastic foundation model 

assumes that the deformation of each element is independent of neighbouring elements, it’s 

predictions of cartilage contact pressures have shown good agreement with FEA models8,35 and 

experiments9. However, if more complex constitutive representations of cartilage are required, it may 

be preferable to use gait simulation outputs as boundary conditions on a conventional finite element 

model.  

We conclude that the use of an elastic foundation model with a ray-casting OBB contact 

detection algorithm is a viable approach for simulating articular contact within the context of dynamic 

full body movement simulations. The computational speed achieved allows for musculoskeletal 

simulations involving joint contact to be performed more readily, permitting the use of probabilistic 

approaches to look at how injury and intervention-induced changes in knee structure may affect in vivo 

knee mechanics and function. 
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Colin R. Smith, Scott C. E. Brandon, Darryl G. Thelen 
(In preparation for PLOS Computational Biology) 

 Concurrent musculoskeletal simulation can provide insight into the roles of individual muscles 

in determining joint mechanics during functional whole-body movements. We introduce the 

Concurrent Optimization of Muscle Activations and Kinematics (COMAK) algorithm to predict 

muscle forces, secondary (unmeasurable) joint kinematics, ligament forces, and articular contact 

pressures from motion capture and ground reaction data. COMAK optimizes the muscle activations 

and secondary kinematics to generate the measured accelerations in the primary degrees-of-freedom 

while minimizing an objective function. To demonstrate the algorithm, we used a subject-specific 

multibody knee model (femur, tibia, patella, and menisci bodies, 24 degrees-of-freedom) and motion 

analysis data to predict tibiofemoral and patellofemoral joint mechanics during walking. The COMAK 

objective function minimized the weighted sum of squared muscle activations, where muscle-specific 

weights influence the solution of muscle redundancy. Random sampling of these weights in a Monte 

Carlo analysis generated variable muscle coordination strategies that influenced the predicted knee 

mechanics. A total of 10,000 simulations were performed using a high throughput computing grid. 

We found minor variations in predicted kinematics and contact forces during weight acceptance 

compared to the large variations during push off (Tibiofemoral contact force range: 1st peak 0.15 body-
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weight (BW), 2nd peak 1.21 BW). In late stance, the hip, knee, and ankle moments were redistributed 

between the uniarticular and biarticular muscles, with the rectus femoris, gastrocnemii, and soleus 

activations exhibiting the strongest correlations with the predicted knee mechanics.          

 

 The loading experienced by soft tissues within the knee during functional movement has 

important implications for growth, injury, and pathology1. Functional knee mechanics are governed 

by dynamic interactions across multiple scales involving limb kinetics, muscle loading, ligament 

loading, and articular contact. Understanding the contributions of these factors to knee function may 

provide insight into treatments of musculoskeletal pathologies. However, quantification of knee soft 

tissue loading during movement remains a challenge for both measurement and simulation 

approaches. Experimental studies are limited by the inability to perform multiple treatments on the 

same individual and difficulty of obtaining in vivo soft tissue loading measurements. Musculoskeletal 

simulation provides both of these capabilities, but is complicated by muscle redundancy, uncertainty 

in model parameters, and the complexity of resolving dynamically consistent muscle-driven full-body 

dynamics and joint mechanics.  

  Recent advances in musculoskeletal simulation provide improved methods for estimating in 

vivo soft tissue loads and parametric exploration of the multifactorial interactions that govern 

functional knee mechanics. Novel multibody musculoskeletal simulation algorithms enable limb 

dynamics and joint mechanics to be resolved simultaneously2. This provides dynamic consistency 

between scales, and better replicates physical reality. However, existing algorithms suffer from long 

computation times, numerical instability, and simplifying assumptions to compute muscle induced 

accelerations across six degree-of-freedom (DOF) joints2. Analysis techniques for quantifying 
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uncertainty propagation in musculoskeletal simulations have been introduced, but require extensive 

computing power or limited sampling of parameter space to accommodate time consuming 

simulations3. In this study, we introduce a novel simulation framework that leverages software and 

hardware advances to enable the interaction of limb, muscle, and joint mechanics to be investigated 

over the entire parameter space of a musculoskeletal model during a simulation.    

Previous simulation techniques generally follow either a sequential or concurrent approach to 

predict internal joint mechanics during movement from motion capture and ground reaction 

measurements. The sequential approach consists of two stages. First, a multibody musculoskeletal 

simulation is performed with simplified joint representations to predict muscle forces. Second, a finer-

scale simulation predicts joint mechanics from the calculated muscle forces. This technique can yield 

detailed predictions of tissue loading if a finite element analysis is performed4. However, the simplified 

joint representations within the musculoskeletal simulation neglect load dependent joint mechanics, 

resulting in dynamic inconsistencies between the two stages. Concurrent simulation approaches 

overcome this limitation by including a detailed joint model within the multibody musculoskeletal 

simulation. This allows load dependent joint mechanics to be simultaneously predicted with the 

muscle forces necessary to generate the observed full body movement.  

The detailed knee models used in concurrent simulations enable six DOF joints, but must be 

formulated to enable fast resolution of joint mechanics. Several multibody models of healthy knees5,6 

and total knee replacements (TKR)7–9 with strand-based ligaments10 and elastic foundation contact11–

13 have recently been introduced. Another approach incorporates a surrogate representation of a finite 

element model within the musculoskeletal simulation14–19. Recently, state-of-the-art dynamics software 

engines have introduced novel algorithms to enable finite element joint representations within 
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multibody simulations20,21. Thus, full finite element knee models may be directly included within 

musculoskeletal simulations in the near future.  

We have recently published a review of concurrent simulation techniques that covers previous 

algorithms in detail2. Generally, concurrent simulations require a set of primary DOF, which are readily 

measured using motion capture, and a set of secondary DOF, which cannot be measured with 

confidence. Within the simulation, the multibody model dynamics are used to predict a set of secondary 

kinematics, muscle forces, ligament forces, and articular contact pressures that are dynamically 

consistent with the measured primary kinematics and ground reactions. Several forward and inverse 

approaches have been used to concurrently simulate knee mechanics during walking9,22,23, running24, 

squatting25 and landing26. We have published applications of a novel simulation routine, Concurrent 

Optimization of Muscle Activations and Kinematics (COMAK) to study knee mechanics relating to 

ligament injury27, total knee replacement28, and crouch gait29. However, we have not yet described the 

methodology of the simulation routine in detail.   

Musculoskeletal simulations have been used to investigate the functional roles of muscles 

during movement for several decades, but muscle redundancy remains a major challenge30–33. Many 

deterministic approaches using various cost functions and optimization formulations have been 

proposed to resolve muscle redundancy, however, the correct formulation remains uncertain34,35. 

Stochastic approaches have also been proposed to explore model topology and quantify the sets of 

feasible activation patterns to perform a task36. Beyond muscle redundancy, there have been many 

metrics proposed to quantify the individual contributions of muscles to generating movements. 

Induced acceleration analysis has been widely used31–33, but is difficult to interpret clinically, does not 

account for neuromuscular compensation, and the results are sensitive to the joint kinematic 

descriptions37. Thus, improved simulation and analysis techniques have potential to provide further 
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insight into role of individual muscles in functional joint mechanics which could be exploited to 

understand pathologies and improve treatments. 

Variation of the neuromuscular coordination strategy within a concurrent simulation 

framework can provide insight into the load dependencies of functional knee mechanics. Previously, 

muscle specific weights were introduced to a static optimization simulation of gait to study the 

influence of muscle activity on tibiofemoral contact loads38. They found tibiofemoral contact forces 

could be reduced in late stance by selecting a muscle coordination strategy with increased gluteus 

medius, uniarticular hip flexors, and soleus activity and decreased rectus femoris and gastrocnemii 

activity. However, the knee model did not capture load dependent effects and their exploration of the 

muscle weighting parameter space was limited. Nevertheless, these predictions provide a potential 

mechanical basis to inspire interventions for degenerative knee pathologies such as osteoarthritis. 

 Probabilistic analyses can quantify uncertainty and parameter sensitivity in musculoskeletal 

simulations, but require that simulations are repeated with many sets of input parameters39. The muscle 

weights introduced by Demers et al, provide an opportunity to parameterize the neuromuscular 

coordination strategy and thus resolve muscle redundancy probabilistically. However, the number of 

required simulations becomes especially burdensome when using concurrent simulation techniques 

which already introduce additional uncertain ligament and articular contact parameters. High 

Throughput Computing (HTC) provides a hardware solution to overcome this difficulty and enable 

large scale Monte Carlo style sensitivity studies. HTC manages pools of computers and schedules 

simulations to be performed using the next available processor, enabling thousands of simulations to 

be performed in parallel40.  

This study introduces the methodology behind the concurrent optimization of muscle 

activations and kinematics (COMAK) simulation framework to probabilistically predict secondary 
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kinematics, muscle forces, ligament forces, and articular contact pressures during functional 

movements. The first objective is to formally describe the simulation algorithm and demonstrate its 

capacity for deterministic prediction of subject-specific joint mechanics. The second objective is to 

use COMAK and an HTC cluster to quantify the uncertainty in simulation predictions due to an 

assumed neuromuscular coordination objective, and to access the sensitivity of knee joint contact 

predictions to neuromuscular coordination. 

 

 
Figure 1 The musculoskeletal model used in this study included a detailed representation of the knee joint5. 

The model included independent femur, tibia, patella and menisci bodies connected by 6 DOF joints. 

Ligaments were represented by bundles of nonlinear springs, and articular contact between the cartilage 

and menisci was modeled using an elastic foundation formulation.   

Knee Model  

We previously developed and validated a multibody knee model which included independent 

femur, tibia, and patella bodies with six DOF joints, articular contact, and strand-based ligaments5. 

This model included elastic foundation representations of cartilage contact, where the contact pressure 

is calculated based on the local overlap depth of cartilage meshes11. Fourteen passive ligamentous 

structures of the knee were modeled as bundles of nonlinear springs whose force-strain curve included 
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a nonlinear toe region at low strains and linear stiffness region at high strains27. The knee model was 

integrated into a generic lower extremity musculoskeletal model which was scaled to our subject based 

on segment lengths using optical motion capture. The musculoskeletal model included three hip 

rotations, six DOF tibiofemoral, patellofemoral, and tibiomenisical joints, and a one DOF ankle joint. 

The model was actuated by 44 muscle-tendon units. 

For this study, we extended this model to 

include independent meniscus bodies with six 

DOF joints (Figure 1).  Subject-specific menisci 

geometries were segmented from the magnetic 

resonance (MR) images and contact between the 

menisci and tibial and femoral cartilage was 

modeled using the elastic foundation formulation 

(Youngs Modulus = 3 MPa, Poissons Ratio = 

0.45). The attachments of the menisci to the tibial 

plateau were represented by ligament strands representing the anterior and posterior horns, and the 

coronary ligaments (capsular attachments along the outer circumference of the menisci). The 

transverse ligament which spans between the anterior regions of the menisci was also represented. 

The constitutive parameters for these ligaments (Table 1) were selected based on cadaveric studies41–

44 and previous computational models6,45. 

Motion Analysis Data 

 Motion capture marker trajectories and ground reactions were measured simultaneously while 

our subject walked overground in a motion analysis laboratory at a self-selected speed. Marker 

Table 1 Constitutive properties of meniscal ligament 

attachments 
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kinematics were low-pass filtered at 6 Hz. Ground reaction loads were low-pass filtered at 50 Hz. A 

static upright standing pose was also recorded to scale the musculoskeletal model. 

Simulation Framework 

 We developed the Concurrent Optimization of Muscle Activations and Kinematics 

(COMAK) algorithm to simultaneously solve for muscle and soft tissue loading during functional 

movement. COMAK integrates motion capture and ground reaction measurements with a 

musculoskeletal model to resolve soft tissue loading. For COMAK, inverse kinematics is used to 

compute the coordinates, speeds and accelerations (𝑞, �̇�, �̈�) of the primary model degrees of freedom.  

Then, numerical optimization is performed to simultaneously solve for the secondary kinematics, 

muscle, ligament, and articular contact forces that generate the measured primary joint accelerations 

while minimizing a cost function that resolves inherent muscle redundancy. 

Optical motion capture enables the measurement of full 

body motion during functional movement, but skin-motion artifact 

introduces error into the computation of joint kinematics46,47.  The 

differentiation between measurable DOFs of high (primary) and low 

(secondary) confidence is a key concept in COMAK.  The algorithm 

solves for the muscle and soft tissue loads necessary to generate the 

measured primary kinematics, while simultaneously predicting a 

Table 2 Classification of model 

degrees-of-freedom for COMAK  
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dynamically consistent set of secondary kinematics.  For this study, we defined the three hip rotations, 
Figure 2 Overview of the Concurrent Optimization of Muscle Activations and Kinematics (COMAK) 

simulation framework. Knee Model Construction Subject-specific bone, cartilage, and ligament 

geometries are segmented from medical images. Constitutive properties are assumed from cadaver 

experiments or can be calibrated from experimental data. Alternatively, the knee model can be generated 

from a statistical shape model. Personalized Model A generic musculoskeletal model is scaled based on 

segment lengths measured in a static pose with motion capture. The knee model is incorporated into the 

scaled musculoskeletal model to develop a personalized model.  Prescribed Flexion Forward Simulation 

A forward dynamic simulation is performed with the personalized model where tibiofemoral flexion is 

prescribed from 0o to 120o, and the secondary knee kinematics are predicted based on the contact, 

ligament, and passive muscle forces. These results are used to develop constraint equations that couple the 

secondary knee kinematics to tibiofemoral flexion during inverse kinematics. Experimental Data Motion 

capture and ground reactions are collected while the subject performs functional movements such as 

walking. Inverse Kinematics A global optimization routine is used to calculate primary kinematics that 

minimize the differences between measured and modeled marker locations. In this phase, the secondary 

DOFs are constrained to be functions of tibiofemoral flexion. Initialization Forward Simulation The 

primary model DOFs are fixed at their initial (𝒕𝟎) values from inverse kinematics and the secondary DOFs 

are allowed to settle into an equilibrium configuration. The resulting posture provides the initial seed to 

COMAK. COMAK The COMAK simulation routine then leverages a high throughput computing grid to 

perform a Monte Carlo analysis in which neuromuscular coordination strategy is varied to generate 

probabilistic predictions of secondary knee kinematics, muscle forces, ligament forces, and articular contact 

pressures. 
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tibiofemoral flexion and ankle flexion as the primary DOFs (Table 2).  Tibiofemoral translations, non-

sagittal rotations and all patellofemoral and meniscal DOFs cannot be reliably measured with motion 

capture48, and thus are designated secondary DOFs. Pelvis translations and rotations are also measurable, 

but classified as prescribed DOFs such that their accelerations are prescribed within the multibody 

model through constraint forces to ensure consistency with observed multi-body dynamics.  

A global optimization inverse kinematics routine was used to calculate the joint kinematics of 

the primary and prescribed DOFs from the motion capture marker trajectories (Figure 2).  This routine 

determined the generalized coordinates of the primary and prescribed DOFs that minimized the sum of 

squared differences between model and measured marker positions at each time step.  To enable this 

calculation, the secondary knee DOFs were constrained to be functions of tibiofemoral flexion (primary) 

during the inverse kinematics optimization. These constraints are then removed when later performing 

the optimization for dynamically-consistent soft tissue loads and secondary kinematics (COMAK).  This 

approach assumes that the differences between the constrained secondary kinematics and load 

dependent secondary kinematics subsequently predicted by COMAK have negligible influence on the 

primary coordinates calculated by inverse kinematics. To develop secondary kinematic constraint 

functions that are consistent with the articular geometry of the model, we performed passive (muscle 

activation = 1%) forward simulations where the tibiofemoral flexion is prescribed to travel through 

its range of motion and the secondary kinematics evolve as a result of the contact, ligament and passive 

muscle forces5.  

Concurrent Optimization  

After inverse kinematics, an optimization problem (COMAK) is solved to simultaneously 

predict the muscle and soft tissue loading and secondary kinematics required to generate the measured 

primary accelerations.  The optimization is formulated to solve for the muscle activations and secondary 
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coordinates that minimize an objective function while satisfying overall dynamic constraints (Fig. 

Error! Reference source not found.).  The dynamic constraints require that the optimized muscle 

forces and the internal joint loads (ligament and contact forces) resulting from the optimized secondary 

kinematics generate the measured primary accelerations, while inducing equilibrium (zero accelerations) 

in the secondary DOFs.   

 

Figure 3 COMAK: Concurrent Optimization of Muscle Activations and Kinematics. The COMAK algorithm is 

a concurrent simulation method that integrates a multibody musculoskeletal with a detailed knee joint 

representation and external observations of full body movement to predict soft tissue loading. COMAK is 

an inverse static optimization method that predicts secondary kinematics, muscle forces, ligament forces, 

and articular contact pressure distributions at each time step. The optimization is formulated to solve for 

the muscle activations and secondary coordinates that minimize an objective function while satisfying 

overall dynamic constraints. The dynamic constraints require that optimized muscle forces and internal joint 

loads (ligament and contact forces) resulting from the optimized secondary kinematics generate the 

measured primary accelerations, while inducing equilibrium (zero accelerations) in the secondary DOFs. The 

optimization design variables are denoted in red. Observed quantities are denoted in blue. 
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At the first time step in COMAK, the prescribed coordinates, speeds, and accelerations 

(𝑞, �̇�, �̈�)𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑
 and primary coordinates, and speeds  (𝑞, �̇�)

𝑝𝑟𝑖𝑚𝑎𝑟𝑦
 are set to their observed values, 

and a forward simulation is performed with minimal muscle activations (𝑎𝑖=0.01) to allow the secondary 

coordinates, 𝑞
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

, to settle into an initial pose. At each subsequent time step, (𝑞, �̇�)𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑
 

and (𝑞, �̇�)
𝑝𝑟𝑖𝑚𝑎𝑟𝑦

 are set to their observed values, while 𝑞
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

 and 𝑎𝑖 are determined by the 

optimization. The secondary speeds, �̇�𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦, are determined from the difference between 

𝑞
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

 at the current and previous time steps. After setting the states of the model, the generalized 

forces are computed and applied.  The contact forces are calculated using an elastic foundation model, 

𝐹𝑐𝑜𝑛𝑡𝑎𝑐𝑡(𝑞), while the ligament forces are computed using a nonlinear spring model,  

𝐹𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡(𝑞, �̇�). Viscous damping forces are applied to each DOF to ensure minimal changes in 

kinematics between time steps 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔(�̇�). The muscle forces are computed from the activations 

𝐹𝑚𝑢𝑠𝑐𝑙𝑒(𝑎𝑖) and the measured external forces, 𝐹𝑒𝑥𝑡, are applied to their corresponding segments.  

The constraint forces to fix the �̈�𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑
 to their measured values are applied and the equations of 

motion are solved for �̈�𝑝𝑟𝑖𝑚𝑎𝑟𝑦 and �̈�𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦. 

Three constraints are enforced during the optimization for 𝑞
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

 and 𝑎𝑖. Muscle 

activations are constrained to vary between 0 and 1, to ensure the resulting muscle forces are 

physiologically reasonable.  

 0 < 𝑎𝑖 < 1 (1) 

Consistency with measured gait dynamics is ensured by satisfying the constraint that the simulated 

accelerations of the primary degrees of freedom matched the observed values, 
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�̈�𝑗𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑝𝑟𝑖𝑚𝑎𝑟𝑦 = ∑ 𝑎𝑖𝐹𝑖
𝑚𝑎𝑥 �̂̈�𝑗,𝑖

𝑚𝑢𝑠𝑐𝑙𝑒(𝑞) + �̈�𝑗
𝑜𝑡ℎ𝑒𝑟(𝑞, �̇�)

𝑛𝑚𝑢𝑠𝑐𝑙𝑒𝑠

𝑖=1

 (2) 

while the accelerations of secondary DOFs are constrained to be zero. 

 

�̈�𝑘
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

= 0 = ∑ 𝑎𝑖𝐹𝑖
𝑚𝑎𝑥 �̂̈�𝑘,𝑖

𝑚𝑢𝑠𝑐𝑙𝑒(𝑞) + �̈�𝑘
𝑜𝑡ℎ𝑒𝑟(𝑞, �̇�)

𝑛𝑚𝑢𝑠𝑐𝑙𝑒𝑠

𝑖=1

 (3) 

In these equations, �̂̈�𝑗,𝑖
𝑚𝑢𝑠𝑐𝑙𝑒  is the acceleration along coordinate 𝑗 due to a unit force in muscle 𝑖, while 

�̈�𝑗
𝑜𝑡ℎ𝑒𝑟 constitutes the accelerations due to all other forces in the multibody system (contact, ligament, 

damping, external, gravitational, centripetal and Coriolis). The third constraint () assumes that inertial 

effects due to accelerations in the secondary degrees of freedom are negligible.  During gait, this 

assumption is justified given the small mass of the patella and menisci and the small magnitudes of 

rotational and translational excursion in secondary degrees of freedom. The redundancy of the 

musculoskeletal system allows multiple combinations of 𝑞
𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦

 and 𝑎𝑖 to fulfill these constraints, 

thus static optimization must be performed to minimize an objective function and identify a unique 

solution.   

The objective function (𝐽) used by COMAK is generalizable, allowing any user-defined 

quantity to be minimized.  We have found a common cost function proposed for static optimization 

performs well for COMAK in most applications: 

 

𝐽 =  ∑ 𝑊𝑖 ∗ 𝑉𝑖 ∗ 𝑎𝑖
2

𝑛𝑚𝑢𝑠𝑐𝑙𝑒𝑠

𝑖

 (4) 

Where 𝑊𝑖 is a weighting term, 𝑉𝑖 is muscle volume and 𝑎𝑖 is the muscle activation.  The weighting 

term enables the activation of individual muscles to be penalized within the optimization.  Consistent 

with Demers et al 38, we have found penalizing biarticular muscles (gastrocnemii and rectus femoris) 
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necessary to predict tibiofemoral contact forces consistent 

with measurements from instrumented implants during 

walking.  This redistributes the hip flexor moment and ankle 

plantarflexor moments to the uniarticular muscles during late 

stance, reducing the loading in the muscles crossing the knee 

and thus the compressive contact force. The nominal muscle 

weight for each muscle was set equal to one (𝑊𝑖 = 1), except 

for those listed in Table 3. Introducing an additional term in 

the cost function to minimize articular contact energy also 

produces similar contact force predictions, largely by similarly 

redistributing the muscle loading to uniarticular muscles 28.  However, the errors in the numerical 

calculation of the gradient of contact energy with respect to the optimized secondary kinematics can 

cause convergence issues within the optimization. Thus, we have found the cost function presented 

above (Equation 4) to be more robust with similar results. 

 The weighting terms (𝑊𝑖) also provide a straightforward means to parameterize the muscle 

coordination objective, enabling probabilistic approaches to resolve muscle redundancy. In this study, 

we performed a Monte Carlo analysis in which the muscle weights (𝑊𝑖) were randomly sampled to 

generate simulations with varying muscle coordination strategies to explore the muscle redundancy 

solution space. The muscle weights penalize the activation of a muscle if (𝑊𝑖 > 1) and encourage the 

activation if (𝑊𝑖 < 1). A high throughput computing (HTC) grid was used to perform 10,000 

simulations using the same model and input kinematic and ground reaction data. Muscle weights were 

parameterized as uniform distributions spanning from 10-10000% of the nominal weight (𝑊𝑖) value. 

The bounds on the distributions were determined as the largest range that still enabled all simulations 

Table 3 Nominal muscle weights used in 

the COMAK objective function. 
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to converge. The mean values of the predicted kinematics and cartilage loading metrics were less than 

1% different when calculated using 9,000 verus 10,000 simulations, ensuring an adequate number of 

simulations were performed. 

The predicted secondary kinematics, muscle activations, ligament loads, and contact metrics 

were quantified by computing the mean and 5th and 95th percentiles of the probabilistic simulation 

outputs over the gait cycle. The influence of neuromuscular coordination on predicted joint mechanics 

was investigated at the instances of the 1st and 2nd peaks in the tibiofemoral contact force. At these 

time points scatter plots of muscle activation vs kinematics, ligament loads, and contact metrics were 

generated and the sensitivity was quantified using Spearman’s correlation coefficient (R).   
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Figure 4 COMAK predictions of muscle activations and knee joint mechanics during the stance phase of 

walking. The 1st peak of tibiofemoral loading occurred at 28% stance and the second peak occurred at 72% 

stance. The pressure maps depict cartilage-cartilage contact pressures.  

Subject-Specific Simulation 

The COMAK simulation algorithm successfully simulated muscle-driven full-body dynamics 

and knee joint mechanics over the entire measured gait cycle using the MRI based multibody knee 

model and subject-specific motion capture and ground reaction data (Figure 4). The simulation took 

30 minutes on a standard desktop computer, making it well suited for high throughput computing 

applications. The total knee contact force exhibited the characteristic double peak during stance phase 

(1st peak: 18% gait cycle, 2nd peak: 48% gait cycle) and majority of the loading was distributed to the 
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medial plateau (Figure 5). The predicted joint mechanics over the gait cycle are detailed in the context 

of variable neuromuscular coordination in the following sections.     

 
Figure 5 Predicted tibiofemoral contact forces during a simulated gait cycle. The bold centerlines are the 

mean and shaded regions show the 5th to 95th percentiles of the Monte Carlo analysis of neuromuscular 

coordination. The vertical dotted lines indicate the instances of 1st and 2nd peak total tibiofemoral contact 

force. 

Variable Neuromuscular Control 

 Parametrically varying the weighting terms in the COMAK cost function resulted in 

substantial variation in the predicted neuromuscular control strategies (Figure 6). The largest variations 

in muscle activity occurred in the second half of stance. At 2nd peak, the parametric muscle weightings 

redistributed the hip, knee, and ankle moments among the uni- and biarticular muscles. This resulted 

in substantial variation in psoas, iliacus, biceps femoris short head, gastrocnemii, and soleus muscle 
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activity. 

 

Figure 6 Variations in predicted muscle activations due to the probabilistic nature of the COMAK cost 

function. The stochastic muscle weightings redistributed the joint torques among the uni and biarticular 

muscles. EDL extensor digitorum longus, EHL extensor hallucis longus. 

 The influence of neuromuscular coordination strategy on tibiofemoral contact force (Figure 

5) and cartilage-cartilage contact pressures (Figure 7) was highly variable throughout the gait cycle. 

Only minor variation was present in the total tibiofemoral contact force at 1st peak (5-95th percentile 

range = 0.15 BW), compared to the significant variation at 2nd peak (5-95th percentile range = 1.21 

BW). The effect at 2nd peak was caused by a redistribution of the hip and ankle moments to the 

biarticular muscles (rectus femoris and gastrocnemii) which induced greater compression forces and 

higher contact pressures at the knee. Muscle loading induced larger variation in the lateral plateau 

contact pressure compared to the medial plateau (2nd Peak 5-95th percentile range = 1.69, 0.44 MPa, 

respectively).  
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Figure 7 [Top] The means (bold centerline) and 5th to 9th percentiles (shaded) of the mean cartilage-cartilage 

contact pressures on the medial and lateral tibial plateaus. Vertical dotted lines denote the instances of the 

1st and 2nd peaks in the tibiofemoral contact force [Scatter plots] The sensitivity of mean medial and lateral 

pressures to muscle activity was quantified using Spearman’s correlation coefficient at the instances 1st and 

2nd Peak tibiofemoral contact force.  
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 The varied neuromuscular coordination had significant effect on the predicted secondary 

tibiofemoral kinematics, demonstrating the capability of COMAK to account for the load dependent 

nature of knee function (Figure 8). The DOFs with the greatest passive laxity: anterior translation and 

internal rotation, also demonstrated the greatest variability due to muscle loading during walking. 

These DOFs also demonstrated the greatest excursions over the gait cycle. All secondary tibiofemoral 

DOFs demonstrated the largest variation during push-off corresponding to the timing the greatest 

muscle activity variability.  

 

Figure 8 Measured tibiofemoral flexion and predicted secondary kinematics over the gait cycle.   
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The predicted locations of cartilage 

contact on the tibial plateau migrated 

anteriorly and posteriorly over the gait cycle 

(Figure 9). The medial contact shifted 

posteriorly from heel strike to 1st peak, 

anteriorly from 1st to 2nd peak, posteriorly 

from 2nd peak through mid-swing, and 

anteriorly in terminal swing. The lateral 

contact shifted posteriorly from heel strike to 

1st peak, then remained stationary until 

terminal swing when it progressed back 

anteriorly. 

The neuromuscular coordination 

induced variations in predicted secondary 

tibiofemoral kinematics manifested as altered 

locations of cartilage contact on the tibial 

plateau throughout the gait cycle. Similar to 

other metrics, there was limited variability at 

1st peak compared to 2nd peak. The medial 

COP showed greater variability in the 

anterior-posterior direction, compared to the 

lateral COP (2nd Peak 5-95th percentile range = 

4.3 mm, 1.9 mm, respectively). At the second 

peak, medial gastrocnemius activation shifted 

Figure 9 [Top] The mean (bold centerline) and 5th-95th 

percentiles of the anterior location of the center of 

pressure (COP) on the tibial plateau. [Scatter plots] 

The sensitivity of the anterior COP on the medial and 

lateral tibial plateaus to muscle activations was 

quantified at the 2nd peak of tibiofemoral loading.  
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the contact posteriorly on the medial plateau and 

anteriorly on the lateral plateau. The opposite 

effect was seen for the lateral gastrocnemius, and 

soleus.  

  The predicted loading of the anterior 

cruciate ligament exhibited three peaks over the 

gait cycle, at heel strike and at the 1st and 2nd 

peaks of tibiofemoral loading. At heel strike, the 

knee is in its most extended posture, at 1st peak 

the quadriceps are most active, and at 2nd peak 

the gastrocnemii are most active. The variability 

increased substantially after 1st peak, and max 

variability occurred at 2nd peak. At 2nd peak, 

rectus femoris and gastrocnemius activations 

increased the loading in the ACL whereas soleus 

activation decreased ACL loading.  

 

In this study, we introduced the 

methodology behind the Concurrent 

Optimization of Muscle Activations and 

Kinematics (COMAK) simulation framework. 

We used an image-based multibody knee model, 

Figure 10 [Top] The mean (bold centerline) and 5th-95th 

percentiles (shaded) of the predicted anterior cruciate 

ligament (ACL) force over the gait cycle. The dotted 

vertical lines indicate the 1st and 2nd peaks of 

tibiofemoral loading. [Scatter plots] The sensitivity of the 

ACL force to muscle activations was quantified at the 1st 

and 2nd peaks using the Spearman correlation 

coefficient. 
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and measured motion capture and ground reaction data to generate subject-specific predictions of 

secondary knee kinematics, muscle forces, ligament forces, and articular contact pressures during 

walking. A Monte Carlo analysis was performed where muscle weightings in the COMAK objective 

function were randomly sampled to generate variations in the predicted neuromuscular coordination 

strategy. The predicted probabilistic knee mechanics showed minimal variability in early stance 

compared the substantial effects demonstrated in late stance and early swing.  

 The COMAK simulation routine demonstrated the capability to simulate subject-specific joint 

mechanics with image-based knee geometries and subject-specific motion analysis data. It should be 

noted that substantial uncertainty exists in these subject-specific predictions due to difficulty of 

estimating knee ligament parameters and resolving muscle redundancy. The speed of the simulation 

algorithm (30 minutes per gait cycle) and minimal memory usage make COMAK well suited for high 

throughput computing applications. This allows thousands of simulations to be performed in parallel, 

enabling Monte Carlo style analyses to quantify prediction uncertainty and assess model sensitivities. 

Here and in previous studies, COMAK has shown robustness to variations in neuromuscular 

coordination strategy and ligament parameters8,49. This trait is especially beneficial for HTC sensitivity 

studies.  

 COMAK predictions of knee mechanics during walking largely agreed with the available in vivo 

measurements. Similar to bone-pin measurements, the tibia internally rotated from heel strike to push 

off and externally rotated through swing (Figure 8)50. Combined magnetic resonance and biplane 

fluoroscopy measurements found greater excursions of the anterior COP on the medial plateau 

compared to the lateral plateau during stance51,52. This finding matches the COMAK simulation 

predictions (Figure 9). In the future, subject-specific model predictions should be compared against 
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in vivo subject-specific kinematics measured during functional movement to accurately quantify the 

true predictive capacity.   

Resolving muscle redundancy remains a major challenge for musculoskeletal simulations of 

movement. Concurrent simulation enables detailed joint models, which add dynamic constraint 

equations for each additional DOF. However, concurrent simulation also introduces secondary DOFs 

as design variables, resulting in increased model redundancy and uncertainty in predictions. We 

propose the solution of muscle redundancy should be treated as an uncertain simulation parameter 

such as segment inertias or muscle model parameters39. Thus, in COMAK we probabilistically resolve 

muscle redundancy using a Monte Carlo analysis where muscle-specific weightings in the optimization 

cost function are randomly varied to generate a set of feasible neuromuscular coordination solutions. 

This technique produced variable neuromuscular coordination strategies that generated the same net 

joint torques to explore the solution space of muscle redundancy. This results in the activation of 

agonist muscles to compensate for muscles penalized by high weight factors. The scatter plots in 

Figures 7,9 and 10 demonstrate an effective analysis technique to quantify the sensitivity of predicted 

knee mechanics to the activation of a given muscle at various time points over the gait cycle. Thus 
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providing a new simulation based approach to study muscle function which is more intuitive and 

directly applicable to clinical problems compared to induced acceleration analysis53.  

 

Figure 11 [Left] Mean and 5th to 95th percentiles of all simulations for external joint torques over the gait 

cycle. COMAK constrains all simulations to generate the same accelerations at each DOF, so the small 

variance is due to differences in predicted secondary kinematics. [Right] Sample cartilage contact pressure 

variations due to neuromuscular coordination differences at the 2nd peak of tibiofemoral loading.  

The external knee flexion moment and knee adduction moment have been widely used as 

surrogate measures of cartilage loading54. Interestingly, in this study the external joint moments were 

nearly unchanged across all simulations, yet cartilage pressure patterns exhibited substantial 

differences at the 2nd peak of tibiofemoral loading (Figure 11). This highlights the importance of 

looking beyond external measurements of joint torques when considering cartilage loading. Joint 

moments constrain the solution space to muscle redundancy, but clearly are only one of several factors 

that contribute to articular contact loading.  

 Several interesting insights into the influence of neuromuscular coordination on knee 

mechanics were enabled through the Monte Carlo analysis. For example, while the soleus does not 

cross the knee, its activation induced an anterior shift in the medial COP and a posterior shift of the 

lateral COP at the 2nd peak of tibiofemoral loading (Figure 9). These are similar effects to the lateral 

gastrocnemius, but opposite of the medial gastrocnemius. This phenomenon occurred because 
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increased soleus activation reduced the needed contribution of the gastrocnemii to the plantar flexor 

torque, thereby decreasing gastrocnemii activity. Because the medial gastrocnemius has a greater 

volume than lateral gastrocnemius, it nominally is selected to contribute more to the ankle torque. 

Thus, if the movement dynamics are unchanged, preferential activation of the soleus leads a greater 

reduction in medial gastrocnemius contribution to the knee mechanics compared the lateral. This 

results in opposing sensitivities of the anterior COP on the medial plateau to soleus and medial 

gastrocnemius activations.  

The variability in the predicted knee mechanics due to neuromuscular coordination can 

provide some insight into the capacity of neuromuscular retraining interventions to affect knee 

mechanics during walking. At the 1st peak of tibiofemoral loading the variations in muscle activations 

had minimal effect on the predicted knee mechanics. But at 2nd peak neuromuscular coordination had 

substantial effect on the knee. Interestingly, there was greater variability induced in the mean pressure 

on the lateral tibial plateau, but greater variability in the anterior COP on the medial side. This 

exemplifies the need for musculoskeletal models to capture the complex interactions that govern 

function knee mechanics. 

 The COMAK simulation framework has many limitations which must be considered when 

designing future studies to leverage its capabilities. First and foremost, COMAK is inherently limited 

by the uncertainty in model parameters and fidelity of the experimental motion analysis measurements. 

Garbage in, Garbage out. Several modeling assumptions are necessary to COMAK which may have 

significant effects depending on the application. Dynamic equilibrium is assumed in the secondary 

DOFs, which is only valid if the mass of the affected body is minimal and the accelerations are small. 

Regardless of the predicted secondary kinematics, the external forces are applied in the same location in 

the global reference frame. This may result in misguided application of the ground reactions to the 
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foot if substantial differences exist between the assumed secondary kinematics in the inverse kinematics 

phase and the COMAK predictions. Finally, the pelvis coordinates are prescribed which may mask 

dynamic inconsistencies between the motion capture and ground reaction measurements.  

 The COMAK algorithm provides a powerful simulation routine to concurrently resolve full-

body dynamics and joint mechanics. The probabilistic cost function provides a novel approach to 

account for muscle redundancy and investigate muscle function. While subject-specific predictions of 

internal joint loading demonstrate the exciting potential for computer simulation, they must be 

interpreted within the context of model uncertainties and muscle redundancy. The true power of 

COMAK comes from its ability to leverage concurrent and probabilistic simulation techniques assess 

the sensitivity of joint mechanics to muscle activity during functional movement.     
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The study objective was to investigate the influence of coronal plane alignment and ligament 

properties on total knee replacement (TKR) contact loads during walking. We created a subject-

specific knee model of an 86 year old male who had an instrumented TKR. The knee model was 

incorporated into a lower extremity musculoskeletal model, and included deformable contact, 

ligamentous structures and six degree of freedom tibiofemoral and patellofemoral joints. A novel 

numerical optimization technique was used to simultaneously predict muscle forces, secondary knee 

kinematics, ligament forces and joint contact pressures from standard gait analysis data collected on 

the subject. The nominal knee model predictions of medial, lateral and total contact forces during gait 

agreed well with TKR measures, with RMS errors of 0.23, 0.22, and 0.33 body weight (BW), 

respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter 

the medial-lateral load distribution, with 4o varus and 4o valgus rotations in component alignment 

inducing +17% and -23% changes in the medial tibiofemoral contact forces at first peak, respectively.  

A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains 

introduced an approximately ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. 

Ligament properties had substantial influence on the TKR load distributions, with the medial collateral 
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ligament and iliotibial band properties having the largest effects on medial and lateral compartment 

loading during stance phase, respectively. The computational framework provides a viable approach 

for virtually designing TKR components, considering parametric uncertainty and predicting the effects 

of joint alignment and soft tissue balancing procedures on TKR function during movement. 

 

Component alignment and soft tissue balance can affect the function and longevity of total 

knee replacements (TKR).  Excessive varus and valgus malalignments are associated with substantially 

higher rates of failure1. Further, clinical studies have linked soft tissue imbalances with instability and 

long-term failures of the joint2-12. Soft tissue balance is highly dependent on ligament tensioning 

achieved surgically, with changes in component thickness and soft tissue releases employed to adjust 

ligament tension to ensure balance13-17. However, despite the clinical significance, it remains 

challenging to assess the effects of component alignment and ligament stiffness on the in vivo behavior 

of TKR during functional movement. Such information is important to elucidate the underlying 

mechanical causes of joint failure. 

Computational musculoskeletal modeling provides a powerful platform to investigate the 

sensitivity of TKR behavior during locomotor tasks such as walking. In contrast to cadaveric 

experiments, computational modeling can be used to comprehensively assess parametric sensitivities 

of joint mechanics under functional soft tissue and external loads. Thanks in part to the Grand Challenge 

Competition to Predict In Vivo Knee Loads initiated by Fregly and colleagues18, models used to predict TKR 

mechanics have seen notable advances in sophistication and veracity in recent years. Entries to the 

competition have employed various modeling approaches including inverse optimization models19, 
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finite element analysis20, EMG-driven simulations21 and dynamic simulations that couple movement 

and joint mechanics22-24. However, often modeling studies do not systematically consider the influence 

that parametric uncertainty25 can have on predictions of joint contact forces. Such uncertainty analysis 

is particularly relevant to assessing ligament effects, given that ligament constitutive properties cannot 

be measured on a subject-specific basis and large variability exists across the population26-31.  

As part of the 2015 “Grand Challenge”, the objective of this study was to investigate the 

influence of joint alignment and uncertain ligament properties on TKR loading during walking. To do 

this, we created a subject-specific knee model that included deformable contact, ligamentous 

structures and six degree of freedom tibiofemoral and patellofemoral joints. A novel numerical 

optimization technique was employed to simultaneously predict muscle forces, secondary knee 

kinematics, ligament forces and joint contact pressures from experimental gait analysis measures. 

Model predictions of tibiofemoral contact forces were compared to subject-specific in vivo 

measurements obtained from an instrumented joint replacement. We also used a Monte Carlo 

approach to assess the effect of uncertainties in ligament stiffness and reference strains on both 

ligament forces and tibiofemoral contact force predictions. 

 

Experimental Data 

The subject of this study was an 83 year old male with an instrumented right total knee 

replacement (Mass = 70 kg, Height = 172 cm). The experimental data was provided by the sixth 

edition of the Grand Challenge Competition to Predict In Vivo Knee Loads32. Whole body kinematics and 

ground reaction forces were measured in a standard motion analysis laboratory while the subject 
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executed two modified styles of overground gait: smooth and bouncy. The verbal instructions for each 

walking pattern were to use a “Reduced (Increased) superior-inferior translation of the pelvis during 

the gait cycle,” respectively18. Motion capture marker kinematics were collected at 120 Hz and low 

pass filtered with a cutoff frequency of 6 Hz and ground reaction forces were collected at 1000 Hz 

and low pass filtered at a cutoff frequency of 50 Hz. Tibial plateau contact loads were measured 

simultaneously with the other experimental data by an instrumented tibial component. The measured 

loads were decomposed into medial and lateral components using an empirical regression equation33. 

Knee Model 

 A three body knee model was developed using the implanted component geometries and 

subject-specific bone geometries segmented from computed tomography (CT) images (Fig. 1). The 

tibiofemoral and patellofemoral joints were 

both modeled as six degrees of freedom 

(DOF) with deformable contact. An elastic 

patellar tendon (PT) and eleven elastic 

ligament bundles were included in the model: 

anteriolateral and posteriomedial posterior 

cruciate ligament (aPCL, pPCL), superficial 

and deep medial collateral ligament (sMCL, 

dMCL), lateral collateral ligament (LCL), 

popliteofibular ligament (PFL), posteriomedial 

capsule (pmCAP), posterior capsule (CAP), 

iliotibial band (ITB), medial patellofemoral 

ligament (MPFL), and lateral patellofemoral 

Figure 1 The knee model used subject-specific bone 

and TKR component geometry and included an 

extensible patellar tendon (PT) and 11 ligament bundles: 

anteriolateral and posteriomedial posterior cruciate 

ligament (aPCL, pPCL), superficial and deep medial 

collateral ligament (sMCL, dMCL), lateral collateral 

ligament (LCL), popliteofibular ligament (PFL), 

posteriomedial capsule (pmCAP), posterior capsule 

(CAP), iliotibial band (ITB), medial patellofemoral 

ligament (MPFL), and lateral patellofemoral ligament 

(LPFL). The knee model was integrated into a generic 

lower extremity model which included 44 muscle-

tendon units acting about the hip, knee and ankle. The 

coronal plane TKR component alignment in the nominal 

model was set to match the limb alignment measured 

for the subject in a standing radiograph. 
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ligament (LPFL). The anterior cruciate ligament was not included in the model because it was resected 

during the TKR surgery.  

 

Table 1 Ligament and patellar tendon properties assumed in the unblinded nominal model. For each 

ligament, the stiffness was evenly divided between the individual strands included in a bundle. Reference 

strains reflect the strain assumed for the ligament with the knee in a relaxed extended posture.  

 

Ligaments were modeled as bundles of strands extending between the origin and insertion attachment 

footprints. Ellipsoidal wrap objects were included for the sMCL, pmCAP and LPFL bundles to 

prevent penetration of the ligament path into the bone and component geometries. A generic ligament 

force-strain relationship was used, which assumed the ligament force to be quadratic at low strains 

and linear at high strains34,35. For each ligament bundle, linear stiffness and reference strain parameters 

were defined to scale the generic force-strain curve (Table 1). The linear stiffness defined the slope of 

the force-strain curve and the reference strain defined the strain of the ligament in a reference posture 

(extended knee). Reference strains were then used to compute the ligament slack lengths. Linear 

stiffness was estimated from ligament cross sectional areas measured from an MRI of a subject of 

similar stature and an assumed elastic modulus of 125 MPa26. Reference strains were adapted from the 

literature36-38 . Ligament attachment footprints on the bone mesh geometries were estimated based on 

Name 

Stiffness     Reference Strain Number of 

Strands N/strain (95% CI)  strain (95% CI) 

aPCL 5700   (2280 - 9120)  0.01  (-0.03 - 0.04) 10 

pPCL 2400   (960 - 3840)  -0.06  (-0.10 - -0.02) 10 

sMCL 2200   (880 - 3520)  0.03  (-0.01 - 0.07) 20 

dMCL 2800   (1120 - 4480)  0.03  (-0.01 - 0.07) 10 

LCL 1800   (720 - 2880)  0.06  (0.02 - 0.10) 10 

PFL 3000   (1200 - 4800)  -0.01  (-0.05 - 0.03) 10 

pmCAP 2000   (800 - 3200)  0.05  (0.01 - 0.09) 10 

CAP 4000   (1600 - 6400)  0.08  (0.04 - 0.12) 8 

ITB 4000   (1600 - 6400)  0.02  (-0.02 - 0.06) 1 

PT 14700   (5880 - 23520)  0.02  (-0.02 - 0.06) 30 

mPFL 1000   (400 - 1600)  -0.05  (-0.09 - -0.01) 15 

lPFL 800   (320 - 1280)  0.01  (-0.03 - 0.05) 15 
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anatomical studies39-53. The attachment points of individual line segments were evenly distributed by 

uniformly sampling B-spline surface representations of the attachment footprints54. 

 The articular surface geometries of the tibial, femoral and patellar components were 

represented as triangulated meshes (10000, 21000, 8000 triangles, respectively). We performed a set 

of simulations with increasing mesh densities to determine the minimum number of triangles per mesh 

required to generate converged contact force predictions. Joint contact surface pressures (𝑝) were 

calculated on each triangle based on the local surface penetration depth according to the elastic 

foundation model55:  

𝑝 =  
(1 − 𝑣)𝐸

(1 + 𝑣)(1 − 2𝑣)

𝑑

ℎ
 (1) 

where 𝐸 is the elastic modulus, 𝑣 is the Poissons ratio, ℎ is the thickness of the tibial insert and 𝑑 is 

the penetration depth. The femoral component was assumed to be rigid and the polyethylene tibial 

insert was assumed to have a uniform thickness of 9 mm and exhibit linearly elastic material properties. 

The commonly reported value for elastic modulus of polyethylene inserts (E=463 MPa)56 was reduced 

by a factor of 10 to improve the numerical stability of contact in the gait simulations. The Poisson’s 

ratio was 0.4657 . Contacting regions between the articulating surface meshes were determined using 

ray-casting techniques in conjunction with hierarchical object orientated bounding boxes38. 

Lower Extremity Musculoskeletal Model 

 The knee model was integrated into a generic lower extremity musculoskeletal model58 which 

consisted of pelvis, thigh, shank, and foot segments. The hip was modeled as a 3 DOF ball and socket 

joint and the ankle as a 1 DOF pin joint. The thigh and shank segments were scaled such that the 

generic tibia and femur geometries matched the subject-specific bones. All remaining segments were 

scaled to minimize the differences between anatomical landmarks on the generic model and 
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anatomical marker positions measured with the subject in a static upright posture. The subject-specific 

femur and tibia were manually aligned to the scaled generic bones. The femoral and tibial components 

were placed such that the limb alignment in the coronal plane matched the hip-knee-ankle angle 

measured from a standing radiograph59(Fig. 1). The patella was manually positioned relative to the 

femur such that it matched the CT scans in the reference posture.  

 The generic model included 44 muscle-tendon units crossing the hip, knee and ankle joints58. 

Individual muscle forces (F) were assumed to linearly scale with activation level (a), i.e. F=aF0 where 

F0 is the maximum isometric force for the muscle. The full model was implemented in SIMM60 with 

the Dynamics Pipeline (Musculographics Inc., Santa Rosa, CA) and SD/Fast (Parametric Technology 

Corp., Needham, MA) used to generate the code describing ligament wrapping and the multibody 

equations of motion. 

Gait Simulations 

At each frame of the gait cycles, a global optimization inverse kinematics routine determined 

pelvis translations, pelvis rotations, hip angles, knee flexion angle and ankle angle that minimized the 

sum of squares differences between model marker locations and measured marker locations. During 

inverse kinematics, the secondary tibiofemoral and all patellofemoral kinematics were constrained to 

be functions of the knee flexion angle. These functions were determined by simulating passive knee 

flexion (0o to 70o) using the subject specific knee model. 
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Figure 2 A numerical optimization approach was used to simultaneously predict patellofemoral kinematics, 

secondary tibiofemoral kinematics and muscle forces that, together with the induced ligament forces and 

contact pressures, generated the measured hip, knee and ankle accelerations at each time step of a gait 

cycle. Muscle force distribution was determined by minimizing an objective function that consisted of a sum 

of volume weighted squared muscle activations and the knee joint contact energy. 

An enhanced static optimization (ESO) routine was then used to simultaneously predict the 

muscle forces, secondary tibiofemoral and patellofemoral kinematics, ligament forces and joint contact 

pressures at each frame in the gait cycle (Fig. 2). The optimization problem was formulated to solve 

for muscle activations and secondary knee kinematics which minimized an objective function while 

satisfying overall dynamic constraints.  

 

𝐽 =  ∑ 𝑉𝑖𝑎𝑖
2 + 𝑤 ∑ 𝑈𝑗

𝑛𝑓𝑎𝑐𝑒𝑠

𝑗=1

𝑛𝑚𝑢𝑠𝑐𝑙𝑒𝑠

𝑖=1

 (2) 

The objective function (𝐽) minimized the muscle volume (𝑉) weighted sum of squared muscle 

activations (𝑎)61 plus the knee joint contact energy. Contact energy (𝑈) associated with each face of a 

contact mesh was computed as the integral of its force-deformation relationship (Eq 1). The net 
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contact energy was then obtained by summing energy over all faces of the articulating surface meshes. 

In a sensitivity study, we found inclusion of the contact energy term reduced tibiofemoral contact 

loads, particularly at the second loading peak of stance phase. The regularization scale factor w was 

held constant for all simulations at a value for which further increases had relatively small effects on 

the predicted peak contact loads.  The optimization constraints required that the muscle forces and 

internal knee loads (contact pressures, ligament forces) produced by the optimized knee kinematics 

generate the measured hip, knee (flexion), and ankle accelerations while also inducing equilibrium 

(zero accelerations) in the secondary tibiofemoral and all patellofemoral degrees of freedom. Minor 

damping effects were included on the knee DOF to ensure the generation of smooth frame-to-frame 

kinematics (mean damping force and moment magnitudes were less than 10 N and 1 Nm, 

respectively). Pelvis coordinates were prescribed to reproduce measured values, and measured ground 

reaction forces and moments were applied directly to the feet. It should be explicitly noted that 

tibiofemoral and patellofemoral behavior were not pre-assumed in our simulations, but evolved as a 

result of the interaction of external, joint contact, ligament, and muscle forces. Thus, each gait 

simulation provided a prediction of the ligament and contact forces over the entire gait cycle which 

were then analyzed for the purposes of this study. 

Grand Challenge Competition 

For the blinded phase of the competition, we incorporated the TKR components into a 

healthy knee model62, aligning and orienting the components in way that best fit the natural knee 

cartilage surfaces. For the unblinded phase, we replaced the bone geometries with the subject-specific 

skeletal geometries provided for the subject. We also repositioned the TKR components to both 

match the articular surfaces based on the subject’s CT scans and coronal alignment based on standing 

radiographs (Fig. 1). We defined the ligament origins, insertions and wrapping geometries to the 

subject-specific bone geometries using literature descriptions of normal attachment sites39-53.  
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The tibiofemoral medial, lateral and total contact force predictions of the blind and unblinded 

models were quantitatively evaluated against the measured contact forces for the smooth and bouncy gait 

styles by computing the bias (average difference in force predictions), precision (standard deviation of 

the force prediction errors), R2 (squared Pearson’s correlation coefficient and coefficient of 

determination) values and root-mean-square (RMS) errors.  

Sensitivity to Coronal Plane Alignment 

 To assess the influence of coronal plane component alignment on the contact force 

predictions of the model, we performed a series of simulations with the knee alignment modified 2o 

and 4o varus and valgus from the nominal orientation in a standing posture. This was achieved by 

rotating the femoral component by 1o and 2o in the coronal plane and counter-rotating the tibial 

component by an equal amount. Passive forward simulations were performed iteratively with the knee 

fixed at 0o flexion to settle the tibia and patella and establish a new reference posture. For each 

reference posture, the unaltered reference strain of each ligament was then used to compute ligament 

slack lengths. Smooth and bouncy gaits were then re-simulated using the inverse kinematics and ESO 

methods described previously. 

Probabilistic Simulation 

 The sensitivity of predicted tibiofemoral contact forces during smooth gait to ligament 

constitutive properties was assessed using the Monte Carlo method. The linear stiffness and reference 

strains of each ligament bundle were represented by independent Gaussian distributions. The 

distributions were centered at the nominal model stiffness and reference strain values and the standard 

deviations were assumed to be 30% of the nominal stiffness and 0.02 strain, respectively63. A total of 

2,000 simulations were performed on a high throughput computing grid using randomly selected 

values from the constitutive property distributions. The uncertainty in the predicted medial, lateral 
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and total tibiofemoral contact forces was quantified by calculating the time varying means and standard 

deviations of all the simulations. The number of simulations was justified by verifying that the mean 

of the total tibiofemoral contact force at each frame of the gait cycle varied by less than 1% when the 

final 10% of the Monte Carlo simulations were removed.  

We then performed a sensitivity analysis to determine the relative influence of the properties of each 

ligament on the predicted tibiofemoral contact forces. At both the first and second peaks of 

tibiofemoral loading during stance, we computed the Pearson’s correlation coefficient (R) to quantify 

the correlation between the stiffness and reference strain of each ligament to the tibiofemoral contact 

forces (Fig. 4). The Pearson’s correlation coefficients range between -1 and 1, with values of 1 

indicating a perfect positive correlation, -1 indicating a perfect negative correlation, and 0 indicating 

no correlation. The absolute values of the Pearson’s correlation coefficients were used to determine 

the relative influence of the stiffness and reference strain of each ligament on the tibiofemoral contact 

forces. 

 

Figure 3 Lower extremity posture, activated muscles (shown in red), and computed contact pressures on 

the femoral and tibial components throughout the smooth gait cycle. 
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Figure 4 Representative scatter plots showing the correlation between predicted tibiofemoral contact 

forces at the second peak of tibiofemoral loading during stance and ligament reference strain. Each red 

point corresponds to 1 of the 2000 simulations ran. The strength of the correlation between the predicted 

contact forces and the reference strain were evaluated using Pearson’s correlation coefficients (R). 

The blinded model predictions of total tibiofemoral loading mimicked the overall measured 

temporal patterns, with Pearson’s R2 values of 0.86 and 0.82 during smooth and bouncy gait, respectively 

(Table 2). However, the blinded predictions were biased toward over-predicting the total contact force 

magnitude (smooth = 0.28 BW, bouncy = 0.3 BW).  Much of the bias arose from over-predicting the 

loading on the medial compartment throughout the gait cycle, while slightly under-predicting the 

lateral compartment loading throughout much of stance (Fig. 5). Blinded RMS errors were 0.52 BW 

and 0.29 BW on the medial and lateral compartments, respectively, in the smooth gait trial. 

The unblinded model included the subject-specific skeletal geometries and knee joint 

alignment, as well as ligament attachments determined from the bone geometries. Unblinded total 
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knee load predictions were substantially more consistent with measurements, with only a slight bias 

toward over-prediction (smooth = 0.10 BW, bouncy = 0.18 BW). The temporal patterns of stance phase  

loading were well predicted on both compartments, while the late swing loading peak on the lateral 

compartment was predicted to occur slightly later than was measured (Fig. 5). Unblinded RMS errors 

were reduced to 0.23 BW and 0.22 BW on the medial and lateral compartments, respectively, in the 

smooth gait trial. The corresponding R2 coefficients of determination were 0.71 and 0.56 for the medial 

and lateral compartments, respectively.  

 

Figure 5 Comparison of blinded and unblinded model predicted tibial component contact forces (in 

superior direction) to measured contact forces throughout the smooth and bouncy gait cycles. Error metrics 

are given in Table 2. 
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 Coronal Alignment Effects 

The coronal plane alignment of the TKR 

components had minimal effect on the net knee 

contact force over the entire gait cycle, but had a 

substantial effect on the medial-lateral 

distribution of the predicted contact forces 

during stance (Fig. 6). As expected, more varus 

alignments shifted the contact force distribution 

to the medial side of the joint, with the medial 

compartment supporting 42%, 54%, and 67% of 

the total predicted knee load at the first peak for 

the 4o valgus, nominal, and 4o varus component 

alignments, respectively. Similarly, the medial 

compartment accounted for 33%, 45%, and 

58% of the total load at the second peak.  

 

Probabilistic Ligament Simulations 

 The predicted ligament forces were relatively low with means of <50 N for each of the 

ligament bundles throughout the gait cycle (Fig 7). The deep MCL, superficial MCL and iliotibial band 

remained engaged at relatively constant tensions throughout much of stance. The posterior capsule 

and LCL forces exhibited a distinct peak of ~50 N when the knee was extended in late swing. The 

PFL and PCL exhibited peak loads just prior to toe-off, and then remained engaged throughout swing. 

 

Figure 6 Sensitivity of joint contact forces to variations 

in coronal plane component alignment for smooth 

gait. Placing the components in a varus alignment 

relative to the nominal position shifted more of the 

force distribution to the medial compartment. The 

opposite relationship exists when placing the 

components in a valgus alignment, relative to 

nominal. Comparable results were found for bouncy 

gait. 
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There was substantial variability 

in predicted ligament forces due to 

uncertainty in ligament stiffness and 

reference strains (Fig. 7). The superficial 

MCL, deep MCL, PCL and iliotibial band 

forces were particularly sensitive in stance 

phase, with the 95% confidence intervals 

extending from 0 to >100 N for each of 

these bundles. During swing, posterior 

capsule and LCL forces were highly 

sensitive, with magnitudes that could vary 

from 0 to 100 N in terminal swing.  

Ligament properties had similar 

influence on the predicted medial and 

lateral contact forces (Fig. 8). The 95% confidence interval (CI) of the predicted medial, lateral and 

total contact force remained nearly constant (± 0.2 BW) throughout the gait cycle with similar 

variability seen in the medial and lateral compartments.  

For all ligaments, total contact force was positively correlated with ligament stiffness and 

reference strain (Fig. 9). The properties of the deep and superficial MCL had the primary influence on 

predicted medial contact force at both first and second peak of tibiofemoral loading in stance. The 

reference strain of the aPCL was a secondary influence at both peaks and the reference strain of the 

pmCAP had influence at the second peak. The reference strain of the iliotibial band showed a minor 

negative correlation throughout stance, acting to shift the load to the lateral compartment. The lateral 

Figure 7 Variability in ligament forces (shaded area 

represents the range +/- 2 standard deviations) throughout 

the smooth gait cycle due to uncertainty in ligament stiffness 

and reference strains. The dark center line is the mean of the 

Monte Carlo simulations, which is nearly identical to the force 

predicted by the nominal model. 
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contact force was primarily influenced 

by the properties of the iliotibial band 

over the entire stance phase. At first 

peak, the iliotibial band exhibited the 

highest correlation with load 

(Stiffness: R = 0.27, Reference Strain: 

R = 0.81) while the properties of both 

bundles of the MCL and showed 

slight negative correlations. At the 

second peak, the iliotibial band 

properties were again the primary 

influence with the PFL, LCL and 

aPCL acting as secondary positive 

contributors. 

 

 Our primary objective was to investigate the effect of TKR component alignment and 

ligament constitutive properties on tibiofemoral contact forces during gait. To accomplish this, we 

developed a subject-specific knee model, incorporated it into a lower extremity musculoskeletal model 

and then used numerical optimization to simultaneously predict muscle, ligament and joint contact 

loads from motion analysis measures. We found that the incorporation of subject-specific component 

alignment was critical to achieve predictions of medial-lateral contact force distributions that agreed 

with measurements from an instrumented TKR. Our sensitivity analysis showed that predicted 

Figure 8 Variability in predicted tibiofemoral joint contact forces 

(mean +/- 2 standard deviations) throughout smooth gait cycle 

due to uncertainty in the stiffness and reference strains assumed 

for ligaments. 
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ligament forces and medial-lateral contact 

force distributions were quite dependent on 

ligament stiffness and reference strain, with 

variations of ±0.2 body weight due to 

uncertainties in these parameters. Ligament 

properties are often manipulated in TKR 

procedures, such that our new simulation 

framework provides a viable approach for 

predicting the effects of TKR component 

designs and surgical techniques on post-

operative knee function.  

Musculoskeletal modeling and 

simulation techniques have notably advanced 

in recent years.  The “Grand challenge 

competition to predict in vivo knee loads” has 

contributed to this advance by providing rich 

subject-specific data sets of medical images, 

TKR geometries, motion analysis data and 

joint contact load measurements, which allow researchers to benchmark various modeling techniques 

against each other.  Prior approaches have included traditional optimization techniques to estimate 

muscle forces as inputs to finite element models of the knee joint20,  EMG-driven simulations21 and 

multi-body dynamic simulations that include joint contact between articulating surfaces22,24,38. The 

2014 “Grand Challenge” winner introduced a unique optimization approach, termed Force 

Dependent Kinematics (FDK), that iteratively solved for the muscle forces and secondary 

Smooth Gait 

 Medial Lateral Total 

R2, Pearson's    

Blinded 0.83 0.48 0.86 

Unblinded 0.81 0.70 0.83 

R2, Coefficient of determination 

Blinded -0.47 0.19 0.68 

Unblinded 0.71 0.56 0.79 

Bias (BW)    

Blinded 0.44 -0.18 0.28 

Unblinded 0.14 -0.06 0.10 

Precision (BW)    

Blinded 0.27 0.24 0.30 

Unblinded 0.19 0.21 0.32 

RMS error (BW)    

Blinded 0.52 0.29 0.40 

Unblinded 0.23 0.22 0.33 

    

Bouncy Gait 

 Medial Lateral Total 

R2, Pearson's    

Blinded 0.80 0.42 0.82 

Unblinded 0.70 0.61 0.72 

R2, Coefficient of determination 

Blinded -0.26 0.21 0.66 

Unblinded 0.62 0.26 0.62 

Bias (BW)    

Blinded 0.44 -0.14 0.30 

Unblinded 0.12 0.06 0.18 

Precision (BW)    

Blinded 0.25 0.26 0.34 

Unblinded 0.25 0.28 0.44 

RMS error (BW)    

Blinded 0.50 0.29 0.45 

Unblinded 0.28 0.29 0.48 

 

Table 2 Agreement between measured and model 

(blind and unblind) predicted tibiofemoral joint contact 

forces during the smooth and bouncy gait trials. 



102 
 

tibiofemoral kinematics that balanced lower extremity dynamics19. However, that modeling approach 

pre-assumed an inextensible patellar tendon, resulting in an artificial kinematic constraint. We have 

extended the FDK approach by simultaneously solving the muscle forces, secondary tibiofemoral and 

all patellofemoral kinematics that would induce the measured joint accelerations. Our joint contact 

load prediction errors (RMS error = 0.33 in smooth gait) are comparable to that obtained using FDK 

(RMS error = 0.26 BW), and slightly better than those that have been obtained using traditional 

optimization or forward dynamic simulations18,38.  

 

Figure 9 Correlations of tibiofemoral contact forces with ligament stiffness (solid bars) and reference strain 

(open bars) at the first and second peaks of tibiofemoral loading during stance; dMCL = deep medial 

collateral ligament; sMCL = superficial medial collateral ligament; pmCAP = posteriomedial capsule; LCL = 

lateral collateral ligament; ITB = iliotibial band; PFL = popliteofibular ligament; aPCL = anteriolateral 

posterior cruciate ligament. 

Our knee model and simulation technique includes several other notable features. The 

tibiofemoral and patellofemoral joints are each treated as six DOF. The model represented the 

ligaments as bundles of strands acting in parallel and included more passive structures of the knee 
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than prior models. The enhanced static optimization simulation routine provides for simultaneous 

estimates of muscle forces, ligament forces, joint contact pressures and secondary kinematics at each 

time step, accounting for the inherent dynamic coupling between them. Of these, the joint contact 

pressures are particularly relevant in TKR given the links between loading patterns and wear64-68. 

Finally, our simulation times were approximately 20 minutes per gait simulation on a traditional 

desktop computer (3.10 GHz Intel Xeon Processor, 16 GB RAM). As a result, by deploying 

simulations in parallel on a high throughput computing grid, 2000 probabilistic simulations can be 

performed in approximately two hours.  This capability allows the use of a Monte Carlo approach to 

quantitatively assess the influence of uncertain model parameters, such as ligament properties, on knee 

joint contact.  

In agreement with previous modeling studies38,69,70, the coronal alignment of the femoral and 

tibial components affected the predicted knee contact loading patterns. While total contact force 

magnitudes were insensitive to alignment (Fig. 6), each two degree shift in valgus alignment resulted 

in equal (~0.15 BW) increases and decreases in the lateral and medial loads during stance, respectively. 

Accordingly, refining the TKR alignment in the model to better match the standing radiograph (Fig. 

1) was the single most important factor that improved the agreement between our model predictions 

and measurements between the blinded and unblinded simulations (Fig. 5). Coronal plane alignment 

has been linked clinically to TKR component loosening and wear problems7,71-76, such that our 

modeling framework could be further used to investigate the interaction of alignment, contact loads 

and pressure patterns to understand how to better mitigate adverse TKR outcomes.  

We systematically considered the influence of ligament properties on our predicted knee 

contact loading patterns. While prior models in the Grand Challenge Competition have included 

ligaments18,19,22,38, our study is the first to consider the dependence of joint loading on uncertain 



104 
 

ligament constitutive properties. The uncertainty analysis is important as there are currently no viable 

approaches for measuring ligament elasticity in vivo. As a result, ligament stiffness and reference strains 

must be estimated from cadaveric studies35-38, which contributes to uncertainty in the model. Our 

results show total knee contact loads varied by ± 0.2 BW 95% confidence intervals given our assumed 

uncertainty in ligament properties (Fig. 8), and that the total load increased monotonically with 

stiffness and reference strain for all ligaments (Fig. 9). The latter result arises from the fact that our 

simulated tibiofemoral kinematics varied minimally with ligament properties, such that an increase in 

stiffness or reference strain (i.e. shorter slack length) enhanced the ligament tension and thus increased 

the contact load. The influence of stiffness and reference strain on medial-lateral load distributions 

was highly variable between ligaments and throughout the gait cycle (Fig. 9). MCL sensitivity was quite 

interesting with both the deep and superficial bundles exhibiting tensions that varied from 0 to ~100 

N during stance (Fig. 7), depending on the properties assumed. Further, increased MCL tension 

induced an increase in medial compartment loading that exceeded a simultaneous decrease in lateral 

compartment loading. This is in agreement with a loaded cadaveric study which measured a 46% 

reduction in medial force and a 9% increase in lateral force at full extension following a major MCL 

release using an instrumented tibial insert77. Of the ligaments considered, lateral compartment loading 

was most sensitive to the iliotibial band.  Given the clinical significance of soft tissue balancing and 

known effects on long-term TKR function and longevity 67, our modeling framework may aid surgeons 

in positioning components and in planning soft tissue releases.      

The results of this study highlight the clinical and modeling benefits of considering parameter 

uncertainty and sensitivity when performing musculoskeletal simulations. While previous editions of 

the Grand Challenge have focused largely on validation, sensitivity studies are also important to 

establish model credibility25 . All parameters of musculoskeletal models have experimental errors 

associated with their values, and even in subject-specific models, many parameters must be estimated 
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as they cannot be measured. Additionally, musculoskeletal models of the type used in this study can 

contain thousands of parameters, which makes them subject to redundancy, where multiple parameter 

combinations could result in agreement with experimental measures. Accordingly, it is important to 

test the robustness of model predictions to a range of reasonable parameter values, particularly for 

parameters with large influence or variability78. In addition to complementing model validation, 

sensitivity studies are useful to reveal causal relationships between model parameters and simulated 

outcomes, making them highly relevant to surgical simulation. 

To properly interpret the results of this study, several limitations in methodology must be 

noted. First, for computational reasons, joint contact pressures were computed using an elastic 

foundation model55 rather than a finite element model which could better characterize the component 

deformation state. The appropriateness of the elastic foundation model for estimating pressure has 

been previously established for TKR applications79. Additionally, the stiffness of polyethylene tibial 

insert was reduced by an order of magnitude to improve numerical stability of the optimization 

routine. The decreased stiffness resulted in slightly increased deformation and contact area, but had 

negligible effects on the secondary knee kinematics and net contact forces. Refined estimates of insert 

deformation and stress distributions could subsequently be obtained by using the net loads as 

boundary conditions on a finite element model of the joint replacement.  

We assumed muscle geometries based on a published generic musculoskeletal model58, and 

assumed that muscle forces scaled linearly with activation. It would be reasonably straight forward to 

include subject-specific muscle geometry80-82,  if available, and to include more complex models of 

muscle-tendon dynamics83,84 if the research application required more information on muscle 

behavior.  We relied on numerical optimization to resolve muscle redundancy, a technique widely 

studied and used in biomechanics85. A traditional objective function based only on muscle activations 
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61 resulted in an over-prediction of joint contact loads, as has been observed previously19,86.  Adding a 

penalty for high joint contact energy into the objective function (Eq. 2) reduced knee contact forces, 

largely by redistributing loading among the plantarflexor muscles. 

The ligament attachment footprints in the model were determined relative to anatomical 

landmarks because magnetic resonance images were not available for the subject. However, the 

locations of ligament attachments in the knee joint relative to bony landmarks have been thoroughly 

documented in the literature39-53. The representation of each ligament bundle by many strands that 

span the attachment footprints may somewhat mitigate errors associated with single line of action 

ligament models. The Monte Carlo sampling distributions for the ligament properties were modeled 

as Gaussian, centered on nominal values derived from population based studies63 . This assumption 

was necessitated by the scarcity of experimental data and difficulty of measuring ligament properties 

in vivo. Finally, our sensitivity metrics from the Monte Carlo analysis are first order correlation 

coefficients, which inherently do not account for nonlinearities or characterize interactions between 

ligaments. The number of simulations can easily be scaled up using high throughput computing 

platforms, allowing for more advanced sensitivity analyses78,87 that consider parametric interactions.  

In conclusion, we developed a subject-specific knee model and introduced a novel numerical 

optimization approach for predicting in vivo TKR mechanics during walking. Joint contact force 

predictions agreed very well with in vivo measurements obtained via an instrumented knee replacement. 

We also used the model to investigate the sensitivity of joint contact loading to component alignment 

and ligament properties. Thus, the proposed framework provides a viable objective approach for 

virtually designing TKR components, considering parametric uncertainty and predicting the effects of 

joint alignment and soft tissue balancing procedures on TKR function in movement. 
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Colin R. Smith, Rachel L Lenhart, Jarred Kaiser, Michael F Vignos, Darryl G. Thelen 
(Published in the Journal of Biomechanical Engineering) 

Computational knee models provide a powerful platform to investigate the effects of injury 

and surgery on functional knee behavior. The objective of this study was to use a multibody knee 

model to investigate the influence of ligament properties on tibiofemoral kinematics and cartilage 

contact pressures in the stance phase of walking. The knee model included 14 ligament bundles and 

articular cartilage contact acting across the tibiofemoral and patellofemoral joints. The knee was 

incorporated into a lower extremity musculoskeletal model and was used to simulate knee mechanics 

during the stance phase of normal walking. A Monte Carlo approach was employed to assess the 

influence of ligament stiffness and reference strain on knee mechanics. The anterior cruciate ligament 

(ACL), medial collateral ligament (MCL), and posterior capsule properties exhibited significant 

influence on anterior tibial translation at heel strike, with the ACL acting as the primary restraint to 

anterior tibial translation in mid-stance. The MCL and lateral collateral ligament (LCL) exhibited the 

greatest influence on tibial rotation from heel strike through mid-stance. Simulated tibial plateau 

contact location was dependent on the ACL, MCL, and LCL properties, while pressure magnitudes 

were most dependent on the ACL. A decrease in ACL stiffness or reference strain significantly 

increased the average contact pressure in mid-stance, with the pressure migrating posteriorly on the 

medial tibial plateau. These ligament-dependent shifts in tibiofemoral cartilage contact during walking 
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are potentially relevant to consider when investigating the causes of early-onset osteoarthritis 

following knee ligament injury and surgical treatment.   

Computational knee models are useful for investigating joint mechanics in both injured and 

surgically repaired states. For example, prior studies have used knee models to study the influence of 

ACL tears, ligament reconstruction, and tendon transfers on knee kinematics and cartilage loading 

patterns1,2. Accurate descriptions of soft tissue anatomy and mechanics are needed for these 

applications, which can make the models computationally demanding to solve3,4. As a result, knee 

models often are only used to simulate simple loading scenarios, such as laxity tests and isolated 

quadriceps loading5-7. However, it is often important clinically to understand knee mechanics during 

functional multi-joint tasks such as walking.  

Physics-based musculoskeletal modeling approaches have evolved with recent advancements 

in computational and medical imaging technologies and provide a consistent framework to simulate 

the muscular coordination of whole body movement. For example, simulations of subject-specific gait 

dynamics are now readily performed8. However, the musculoskeletal models used in most current gait 

simulations have simplified representations of the knee9, which lack the anatomical detail needed to 

simulate soft tissue injuries or surgical procedures. To address this limitation, advanced multibody 

knee models have been introduced that include detailed representations of anatomical structures10-13, 

but are less computationally demanding than finite element approaches5,14. Multibody knee models are 

hence suitable for simulations of movement, and thus can be used to investigate the influence of soft 

tissue procedures on functional knee mechanics.  



119 
 

Subject-specific knee models can be created from high resolution MR images. A series of 

image slices is segmented to create 3D geometric representations of articular cartilage surfaces and 

ligament attachment sites, which are then used to characterize cartilage contact and ligamentous 

constraints acting about the tibiofemoral and patellofemoral joints15. In multibody knee models, the 

ligaments are typically represented as bundles of nonlinear springs acting between origin and insertion 

footprints16. Constitutive properties of the soft tissues are then needed to compute the internal tissue 

loads that arise with movement. However, these constitutive properties cannot currently be measured 

in vivo on a subject-specific basis. As a result, parametric uncertainty exists in the model which should 

be considered when simulating functional knee mechanics. 

The objective of this study was to use a probabilistic approach to investigate the propagation 

of uncertain ligament constitutive properties onto knee mechanics in gait. Specifically, we assessed the 

effect of variations in ligament stiffness and reference strain on tibiofemoral kinematics and tibial 

contact when the quadriceps are loaded in the first half of stance. Additionally, we used a sensitivity 

analysis to determine the ligament constitutive properties that had significant effects on the 

tibiofemoral kinematics and tibial contact. 

 

 Knee model: We segmented the bone and cartilage surface geometries of the femur, tibia, and 

patella from MR images collected on a young adult female (age 23 yrs, height 1.65 m, mass 61 kg). 

Cartilage surfaces were represented by high resolution triangulated meshes and regions of contact 

between articulating cartilage surfaces were determined using ray-casting techniques together with 

hierarchical bounding boxes17. The combined thickness of the articulating cartilage was assumed to be 
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6 mm for both the tibiofemoral and patellofemoral joints. A nonlinear elastic foundation formulation18 

was used to compute pressure acting on each triangle face in contact based on the depth of 

penetration, the cartilage thickness, and assumed material properties (elastic modulus of 5 MPa, 

Poisson’s ratio of 0.4519)  (Fig. 1). The tibiofemoral and patellofemoral joints were both modeled as 6 

DOF, allowing the cartilage contact, ligament, and muscle forces to determine their kinematics. 

 

 

Figure 1 A multibody knee model was created that included six degree of freedom tibiofemoral and 

patellofemoral joints. Tibiofemoral and patellofemoral contact pressures were computed using an elastic 

foundation model, with local pressure calculated as a nonlinear function of the depth of penetration 

between articulating surfaces. To simulate walking, the knee was incorporated into a lower extremity 

musculoskeletal model with 44 muscles acting about the hip, knee and ankle. 

The origins, insertions, and paths of the major knee ligaments were segmented from the MR 

images which included the: superficial and deep medial collateral ligament (sMCL, dMCL), lateral 

collateral ligament (LCL), anteriomedial and posteriolateral anterior cruciate ligament (aACL, pACL), 
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anteriolateral and posteriomedial posterior cruciate ligament (aPCL, pPCL), patellar tendon (PT), 

medial and lateral patellofemoral ligaments (MPFL, LPFL), popliteofibular ligament (PFL), 

posteriomedial capsule (pmCAP), the 

posterior capsule (CAP), and the 

iliotibial band (ITB). Each ligament was 

represented by bundles of nonlinear 

springs spanning from origin to 

insertion. Ligament paths were 

reconstructed by using ellipsoidal and 

cylindrical wrap objects to model 

wrapping of the ligaments over bony 

geometries. The ligament force-strain 

relationship was assumed to be 

quadratic at low strains and linear at 

higher strains (Fig. 2)20. Linear stiffness 

was estimated from the ligament cross-sectional areas as measured from the MRI. Reference strains 

were adapted from the literature21,22. 

The knee was integrated into an existing lower extremity musculoskeletal model9, which 

included 44 muscles acting about the hip, knee, and ankle joints. The full model was implemented in 

SIMM23 with the Dynamics Pipeline (Musculographics Inc., Santa Rosa, CA) and SD/Fast (Parametric 

Technology Corp., Needham, MA) used to generate code describing muscle-tendon dynamics and the 

multibody equations of motion. The predictive capacity of the model was previously validated by 

comparing simulated passive and active knee kinematics with subject-specific in vivo 3D knee 

kinematics measured with dynamic MRI26. 

Figure 2 The generic ligament force-strain curve was scaled by 

the ligament-specific stiffness (k) and slack length (l𝟎). Slack 

length was computed from reference strain (𝜺𝒓𝒆𝒇) by scaling the 

ligament length in an extended knee reference configuration 

(l𝒓𝒆𝒇) through the relationship l𝟎 = l𝒓𝒆𝒇 (𝟏 + 𝜺𝒓𝒆𝒇)⁄ . The strain 

that defined the transition from nonlinear behavior to linear 

behavior was assumed to be l=0.03.  
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Whole body kinematics and ground reactions were recorded while the subject walked 

overground in a motion analysis laboratory. The lower extremity model was scaled to the subject based 

on segment lengths determined in a standing upright posture. During walking, marker kinematics were 

collected at 100 Hz and then low-pass filtered at 12 Hz. Ground reaction forces were simultaneously 

collected at 2000 Hz (force plate model BP400600, AMTI, Watertown, MA) and then low-pass filtered 

at 50 Hz. A global optimization inverse kinematics routine determined pelvis translations, pelvis 

rotations, hip angles, knee flexion, and ankle dorsiflexion that best agreed with marker positions 

measured during gait 24. At this stage, secondary tibiofemoral and all patellofemoral degrees of freedom 

(DOF) were assumed to be a constrained function of knee flexion, with these functions based on our 

simulated passive knee behavior25.  

At each frame of a gait cycle, an enhanced static optimization (ESO) routine was then used to 

calculate muscle forces, patellofemoral kinematics, and secondary tibiofemoral kinematics that 

minimized an objective function while satisfying overall dynamic constraints26. The objective function 

was a weighted sum of squared muscle activations, with a regularization term added to minimize 

frame-to-frame variations in secondary kinematics. The optimization constraints required that the 

muscle forces and internal knee loads (contact pressures, ligament forces) produced by the optimized 

knee kinematics generate the measured hip, knee (flexion), and ankle accelerations. The pelvis 

coordinates were prescribed to reproduce measured values, and measured ground reaction forces were 

applied directly to the feet. It should be explicitly noted that only knee flexion was prescribed in the 

gait simulation, with all other tibiofemoral and patellofemoral DOFs being allowed to evolve as a 

result of cartilage contact, ligament, and muscle forces. Each gait simulation provided a prediction of 

the tibiofemoral and patellofemoral kinematics and contact from heel strike through the mid-stance 

phase of walking (Fig. 3) 
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Figure 3 Simulation of tibial plateau contact pressures from heel strike (0%) through mid-stance phase of 

gait.  The first loading peak (~15%) preferentially loads the medial tibial plateau. 

We used the Monte Carlo method to assess the propagation of uncertainties in ligament 

constitutive properties onto simulated tibiofemoral mechanics. The linear stiffness and reference 

strains of each of the ligament bundles was represented by independent Gaussian distributions 

centered at the nominal model values with standard deviations of 30% of the mean stiffness and 0.02 

strain, respectively16. A total of 2000 simulations were performed on a high throughput computing 

grid using randomly selected values from the constitutive property distributions. The uncertainty in 

the predicted secondary tibiofemoral kinematics and tibial contact metrics (average pressure, contact 

area, center of pressure) was quantified by calculating the time varying means and standard deviations 

of all the simulations for each output (Fig. 4). 
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Figure 4 The Monte Carlo analysis was performed by varying the linear stiffness and reference strain of the 

ligaments using independent Gaussian distributions, and repeating the gait simulations to determine the 

effect on tibiofemoral kinematics and tibial contact metrics. The output plots show the mean (solid line) ± 

2 standard deviations (shaded region). 

We performed a sensitivity analysis to determine the relative importance of the stiffness and 

reference strain of each ligament on simulated tibiofemoral kinematics and contact metrics. At heel 

strike and the first peak of tibiofemoral loading, we computed the Pearson’s correlation coefficient 

(R) and corresponding p-value to quantify the correlation between the stiffness and reference strain 

of each ligament to both kinematics and contact metrics (Fig. 5). Correlations were considered 

statistically significant if p<0.05. The Pearson’s correlation coefficients varied between -1 and 1, with 

values of 1 indicating a strong positive correlation, -1 indicating a strong negative correlation and 0 

indicating no correlation. The absolute value of the Pearson’s correlation coefficients was used to 

determine the relative influence of the stiffness and reference strain of each ligament on the output 

metrics.  



125 
 

 
Figure 5 Sample scatter plots illustrating the sensitivity of tibiofemoral kinematics and tibial contact metrics 

to variations in ACL stiffness and reference strain. ACL properties exhibited significant influence on anterior 

tibial translation at heel strike. Medial tibial plateau contact pressures increased and migrated posteriorly 

in response to either a reduction in ACL stiffness or reference strain. ACL reference strain had a small, but 

significant, influence on tibial rotation at heel strike, with greater slack length (smaller reference strain) 

associated with internal tibial rotation. 

 

Variability in knee mechanics: Anterior tibial translation and internal tibial rotation exhibited 

marked variability when uncertainties in ligament parameters were considered. Tibial translation 

variability was posture dependent with a 95% confidence interval of 1.5 mm at heel strike and 3 

mm at mid-stance (Fig. 4). The 95% confidence interval for tibial rotation was 5 deg at heel strike 

and decreased slightly at mid-stance. The average tibial plateau contact pressure 95% confidence 

interval ranged from 5-6 MPa at the first peak of loading. The center of medial contact pressure 

exhibited a 95% confidence interval of 2 mm in the anterior-posterior direction. 



126 
 

 
Figure 6 Correlations between tibiofemoral kinematics and ligament stiffness (solid bars) and reference 

strains (open bars) at heel strike and first tibiofemoral loading peak of stance. Notation: ACL – anterior 

cruciate ligament, PCL – anterolateral bundle of posterior cruciate ligament, MCL – medial collateral 

ligament, LCL – lateral collateral ligament, PT – patellar tendon, pCAP – posterior capsule. Significance 

denoted by * (p<0.05). 

Kinematic Correlations (Fig. 6): At heel strike, the ACL, MCL, and posterior capsule exhibited 

the greatest influence on anterior tibial translation. However, by the time of first peak loading, anterior 

tibial translation was only significantly influenced by the ACL. Internal rotation at heel strike was 

primarily guided by the MCL and LCL, with the reference strains of these ligaments being more 

influential than the stiffness. ACL reference strains had secondary influence, being negatively 

correlated with internal rotation. At the time of first peak loading, tibial rotation remained significantly 

influenced by the MCL and LCL. The LCL, ACL and patellar tendon all exerted significant influence 

on lateral translation and adduction in mid-stance, with increased patellar tendon stiffness acting to 
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adduct the knee. Both adduction and lateral tibial translation were most influenced by the LCL, with 

the ACL, PCL, MCL and PT also exhibiting significant influence.  

 
Figure 7 Correlations between tibial plateau contact metrics and ligament stiffness (solid bars) and 

reference strains (open bars) at first loading peak of stance.  Abbreviations given in Fig. 6. Significance 

denoted by *p<0.05. 

Tibial Contact Correlations (Fig. 7): At mid-stance, an increase in ACL stiffness or reference 

strain was highly correlated with a decrease in contact pressure, with the effect being greater on the 

medial tibial plateau. Medial contact area was positively correlated with increased ACL, MCL, and 

LCL stiffness and reference strains. However, an increase in ACL stiffness or reference strain reduced 

contact area on the lateral side. The anterior-posterior location of center of pressure was highly 

correlated with ACL stiffness and reference strain on both the medial and lateral sides. MCL and LCL 

also exhibited influence on the anterior-posterior center of pressure location, with the reference strains 

again being more influential than the stiffness. The lateral center of pressure location was negatively 
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correlated with ACL properties on the medial side, but positively correlated on the lateral side. The 

MCL reference strain also exerted a minor influence on medial-lateral center of pressure location. 

 

 The objective of this study was to examine the sensitivity of tibiofemoral kinematics and 

contact metrics to variations in ligament constitutive properties. Previously, the influence of individual 

ligaments has been evaluated under isolated loading conditions using cadaveric experimentation27-30 

and computational models6,7,31,32. We extended these prior studies by considering ligament influence 

during a functional task, walking, that involves time varying posture, muscle forces, and external 

loading. We found that ACL properties had the primary influence on average tibial cartilage contact 

pressure in mid-stance. The medial and lateral collateral ligament properties modulated tibial rotation 

at heel strike and exhibited secondary influence on cartilage contact location in mid-stance. Given the 

inherent uncertainty that exists in ligament properties, these sensitivities are important to consider 

when using computational models to investigate the surgical treatment of knee injuries and disease.  

Anterior tibial translation and rotation were the most sensitive degrees of freedom to 

variations in ligament constitutive properties (Fig. 4). Cadaveric studies have previously demonstrated 

the importance of the ACL in restraining anterior translation6,7,27. Similarly, we found both the ACL 

stiffness and reference strain to have the greatest effect on anterior translation from heel strike through 

mid-stance. The influence of other ligaments on anterior translation were posture dependent, with the 

posterior capsule and MCL acting as secondary constraints to anterior translation at heel strike. 

Variations in MCL and LCL constitutive properties were more highly correlated with tibial rotation 

than the ACL. This finding is in agreement with experimental studies which have examined the 
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combined effect of the ACL, MCL, and LCL29-31. For example, Markolf et al. found that while the 

ACL does provide rotational stability in an extended knee, its contribution was less than the MCL. 

Additionally, the contribution of the ACL decreased greatly in flexed postures30, which is consistent 

with our sensitivity results suggesting the ACL influence on rotation diminishes as the knee is flexed 

in mid-stance. 

Cartilage pressure, contact area, and contact location were most sensitive to the stiffness and 

reference strain of the ACL. An increase in ACL stiffness non-intuitively induced a reduction in 

cartilage contact pressure in mid-stance, particularly on the medial tibial plateau (Fig. 8). This result 

likely arises from the high degree of conformity between the curvatures of the medial femoral and 

tibial cartilage geometry, which makes contact pressure sensitive to small kinematic variations33. 

Specifically, a stiffer ACL provides a restraint to anterior tibial translation when the quadriceps are 

loaded in mid-stance, thereby maintaining contact in an area of high geometric conformity. In contrast, 

a compliant or longer ACL allows anterior tibial translation, such that contact pressure on the concave 

posterior aspect of the tibial plateau serves as a secondary restraint to anterior tibial translation. As a 

result, simulating gait with a reduced ACL stiffness or smaller reference strain induced an increase in 

contact pressure, particularly on the posterior aspect of the medial tibial plateau (Fig. 8).  
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Figure 8 . Illustration of the influence of ACL stiffness and reference strain on tibial plateau contact 

pressures. Tibial contact pressure patterns resulting from gait simulations with 45% change in stiffness, 

or a 0.03 shift in reference stiffness are shown. Note that a decrease in either ACL stiffness or reference 

strain results in both an increase in peak contact pressure and a posterior migration of the contact on the 

medial tibial plateau. 

The sensitivity to the properties of the ACL is of particular interest due to the prevalence of 

ACL injuries and associated long-term risk for osteoarthritis following ACL reconstruction34,35. 

Surgical factors such as graft type, pretension, and fixation method can affect ligament stiffness and 

reference strains. Thus, a graft stiffness that is reduced compared to the native ACL could induce 

anterior tibial translation and elevated contact pressure during walking. It has been speculated that 

such altered cartilage loading mechanics could contribute to the initiation and progression of 

osteoarthritis36.   
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A few limitations of the model and sensitivity analysis must be noted in order to properly 

interpret the results. The articular surface and ligament geometries were based on a single, healthy 

female subject. A more thorough exploration of multiple knee geometries is warranted to determine 

if the ligament sensitivities are geometry dependent. While we were not able to validate our simulations 

of knee mechanics in gait, we previously showed the nominal knee model predicted passive and active 

tibiofemoral and patellofemoral kinematics that were consistent with subject-specific dynamic MRI 

measures12. However, the nominal knee model relies on ligament properties derived from population 

based studies37, which makes it critical to consider the propagation of this uncertainty when used in 

subject-specific models38. The sparsity and large range of experimental measures of ligament properties 

prevents a thorough analysis of their distribution within the population. An assumption of 

independent Gaussian distributions was therefore used, with previously assumed variances in ligament 

stiffness and reference strain39. Finally, our sensitivity metrics are first order correlation coefficients, 

which inherently do not account for nonlinearities or characterize interactions between ligaments. 

More advanced sensitivity analysis techniques exist37, and are becoming suitable for use as knee 

modeling and computational approaches needed to facilitate large scale explorations improve. 

 We conclude that probabilistic analysis of a multibody knee model is a powerful approach for 

exploring knee kinematic and cartilage contact sensitivities to knee ligament constitutive properties 

during functional movement. Our results highlight the strong influence that ligament stiffness and 

reference length have on cartilage contact loading patterns during walking. The method and findings 

are important to consider when using models to explore surgical treatments used to treat knee injury 

and disease. 
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 A subset of patients with anterior cruciate ligament (ACL) and meniscal injuries can achieve 

knee stability during functional movement through altered neuromuscular coordination, enabling 

them to forgo surgery1. However, it is uncertain whether these patients can also restore knee loading 

to pre-injury patterns, which has important consequences for the long-term health of the joint. Injuries 

to the ACL, and particularly the menisci, increase the incidence of early onset osteoarthritis (OA)2. 

Damage to these structures may alter loading patterns and disrupt cartilage tissue homeostasis, which 

leads to degeneration3. Accordingly, modern ACL reconstruction surgical techniques are evaluated by 

their ability to restore healthy knee kinematic patterns during functional movements4,5. Meanwhile, 

conservative treatment for ACL and meniscal injury is largely focused on restoring knee function, and 

it remains uncertain whether the mechanical constraints allow an altered neuromuscular coordination 

to achieve pre-injury cartilage and ligament loading patterns6. 

 A neuromuscular coordination strategy that restores cartilage loading in an ACL deficient knee 

must provide muscular restraint to accommodate the increased knee laxity. In vivo and in vitro 

experiments indicate an increase in passive anterior and internal-external rotation laxity in ACL 

deficient knees7. Under simple loading conditions, it appears some individuals can compensate for this 
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passive laxity through active muscle control. During open-chain knee flexion-extension measured by 

dynamic MRI, the majority of ACL deficient patients showed altered kinematics, however, select 

patients exhibited healthy tibiofemoral kinematic patterns8. It is not known whether this ability extends 

to functional movements. During walking, lunging, and stair climbing, increased tibial anterior 

translation, medial translation and internal rotation have been observed in ACL deficient patients9–12. 

However, it was not reported if any individual subjects were able to achieve healthy knee kinematics, 

and thus it remains unknown whether conservative treatment for ACL injury has potential to restore 

healthy cartilage loading patterns and preserve the long-term health of the knee.  

 The meniscus distributes loading across the cartilage surface and provides secondary restraint 

to the tibiofemoral joint13. Damage to the meniscus changes the articular geometry, resulting in altered 

cartilage loading and high rates of OA2. Meniscal injury is initially treated conservatively because of 

the difficulty of meniscal repair and poor outcomes following meniscectomy14. An altered 

neuromuscular coordination strategy cannot restore loading patterns following meniscal damage 

because of the altered articular contact geometry. However, active muscle forces could potentially 

supplement the diminished joint restraint of a damaged meniscus to prevent overloading of other 

structures such as the ACL. Meniscectomy increases the strain in the ACL15, predisposes the native 

ACL to injury16 and increases the potential for failure of ACL grafts17. Thus, a possible goal for 

conservative treatment of meniscal damage would focus neuromuscular training to develop a 

coordination strategy that prevents overloading the ACL. Currently, it is unknown whether this goal 

is mechanically achievable.  

 Musculoskeletal simulation enables systematic investigation of the dynamic coupling between 

neuromuscular coordination and joint mechanics in healthy and injured knees. In open-chain knee 

extension tasks, simplified sagittal plane knee models predicted that hamstrings co-contraction reduces 
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ACL loading18 and can restore anterior translation patterns in an ACL deficient knee19. Simulation 

studies on the ability of muscle forces to restore anterior translation during walking are less conclusive. 

A sagittal plane analysis of an ACL deficient knee at heel strike found that a 56% hamstring activation 

could restore tibial anterior translation to healthy magnitudes20. By applying muscle forces calculated 

in a forward dynamic simulation of walking to a multibody knee model, Shelburne et al predicted ACL 

deficiency increased anterior translation throughout stance and early swing21. They also found 

increased hamstrings activation and decreased quadriceps activation could restore tibial anterior 

translation in the ACL deficient knee22. An EMG driven model also predicted increased anterior 

translation in the ACL deficient knee during walking, but found that while co-activation of the knee 

flexors reduced anterior translation, it could not fully restore it to healthy patterns. These studies 

provide the current mechanistic basis for understanding of the role of muscles in compensating for 

ACL deficiency, but are limited by modeling simplifications including two dimensional analyses, 

dynamic decoupling of limb movements and joint mechanics, neglect of the meniscus, and the inability 

to explicitly study cartilage loading patterns.  

  This study leverages a novel musculoskeletal simulation framework to identify the differences 

in soft tissue loading patterns caused by ACL and menisci deficiency and investigates whether these 

differences could be mitigated through an altered neuromuscular coordination strategy. The first 

objective was to identify the differences in cartilage and ligament loading patterns during walking for 

healthy, ACL deficient, menisci deficient, and ACL-menisci deficient knees. The second objective was 

to investigate potential neuromuscular coordination strategies to restore cartilage loading in ACL 

deficient knees and ACL loading in meniscal deficient knees to healthy patterns. 
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 A multibody knee model of a healthy female subject (Age = 23, Height = 1.65m, Mass = 61kg) 

was previously constructed and validated against dynamic magnetic resonance images (MRI)23. The 

original model, which included femur, tibia, and patella bodies, was extended in this study to include 

independent menisci bodies. Each of the joints in the knee model allowed six degrees-of-freedom 

(DOF) of relative motion. Articular contact (cartilage-cartilage (E=5 Mpa, v=0.45) and (cartilage-

meniscus (E=3MPa, v=0.45)) was modeled using an elastic foundation formulation24,25. Ligament and 

capsular structures were represented by bundles of nonlinear springs26. In addition to the 14 structures 

previously included in the model, we added representations of the anterior and posterior meniscal 

horns, transverse ligament, and circumferential attachment of the menisci to the tibial plateau.  The 

knee was integrated into a scaled generic lower extremity model that included 44 muscles spanning 

the hip, knee and ankle joints.  

 Skin mounted marker kinematics and ground reactions were measured for the subject during 

overground walking in a motion analysis laboratory. A global optimization inverse kinematics routine 

was used to calculate the trajectories of the prescribed (6-pelvis) and primary (3-hip, 1-tibiofemoral 

flexion, 1-ankle) DOFs. During this procedure, the secondary DOFs (5-tibiofemoral, 6-patellofemoral 

and 12-meniscal) were constrained to be functions of tibiofemoral flexion. These functions were 

determined from a forward simulation in which the muscles were minimally activated (a=0.02) and 

tibiofemoral flexion was prescribed from 0o to 120o while the secondary kinematics were unconstrained.  

The Concurrent Optimization of Muscle Activations and Kinematics (COMAK) algorithm was then 

used to predict the muscle forces, secondary knee kinematics, ligament forces and articular contact 

pressures necessary to reproduce the measured accelerations of the primary kinematics during walking27 

(Figure 1). At each time step, the muscle activations and secondary kinematics were optimized to 
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generate the measured accelerations for the primary DOFs and equilibrium (zero accelerations) in the 

secondary DOFs while minimizing a cost function. The cost function was the volume-weighted sum of 

squared muscle activations and included muscle specific weighting terms (𝑊𝑖). The muscle weights 

penalize the activation of a muscle if (𝑊𝑖 > 1) and encourage the activation if (𝑊𝑖 < 1). The nominal 

muscle weight for each muscle was set equal to one (𝑊𝑖 = 1), except for the medial gastrocnemius 

(𝑊𝑖 = 4), lateral gastrocnemius (𝑊𝑖 = 7), hamstrings (𝑊𝑖 = 2), rectus femoris (𝑊𝑖 = 3), soleus 

(𝑊𝑖 = 0.9), gluteus minimus (𝑊𝑖 = 0.9), and gluteus medius (𝑊𝑖 = 0.9). These weightings were 

selected to reduce the knee contact force to physiologic magnitudes28,29.  

 

Figure 1 The COMAK simulation framework was used to predict the secondary knee kinematics, muscle 

forces, ligament forces, and articular contact pressures necessary to generate the measured motion. 

Simulations were performed using the same input gait measurements for four knee conditions: healthy, ACL 

deficient, menisci deficient and ACL-Menisci deficient. For the healthy, ACL deficient and menisci deficient 

conditions, a Monte Carlo analysis (10,000 simulations) was performed in which the weightings on each 

muscle in the COMAK cost function were varied to generate neuromuscular coordination patterns to 

explore the solution space of muscle redundancy. 
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The COMAK simulations were repeated using intact, ACL deficient, menisci deficient, and 

ACL-menisci deficient conditions in the knee model. For the intact, ACL deficient, and menisci 

deficient conditions, a Monte Carlo analysis was performed in which the muscle weights (𝑊𝑖) were 

randomly sampled to generate simulations with varying muscle coordination strategies to explore the 

muscle redundancy solution space. Muscle weights were parameterized as uniform distributions 

spanning from 10-10000% of the nominal weight (𝑊𝑖) value. The bounds on the distributions were 

determined as the largest range that still enabled all simulations to converge. A high throughput 

computing grid was used to perform 10,000 simulations for each condition. The mean values of the 

predicted kinematics and cartilage loading metrics were less than 1% different when calculated using 

9,000 vs 10,000 simulations, ensuring an adequate number of simulations were performed.  

For each condition, the predicted anterior translation, internal rotation, cartilage contact 

pressures and ACL loading were compared. The variability in joint mechanics induced by different 

neuromuscular coordination strategies was quantified by calculating the mean, and 5th and 95th 

percentiles of each metric. The sensitivity of each metric to the activation of each muscle was 

determined by calculating the Spearman correlation coefficient at the instances of the first and second 

peaks in the tibiofemoral loading.  

 The predicted tibiofemoral contact forces of each condition demonstrated the characteristic 

double peak (1st peak: 17%, 2nd peak: 48% of the gait cycle), with a greater proportion of the loading 

directed through the medial compartment (Figure 1) during stance. In the nominal simulation for each 

condition, anterior tibial translation and ACL loading (when present) were greatest at nearly the same 

instance as 1st Peak, which coincides with peak quadriceps activation. The predicted internal rotation 

increased throughout stance, with peak internal rotation occurring slightly before toe-off.  
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ACL Deficient 

The introduction of ACL deficiency 

resulted in substantial alterations in the predicted 

knee mechanics compared to the healthy knee. 

The tibia shifted anteriorly in terminal swing. 

This anterior shift persisted throughout stance 

and early swing, before converging back to the 

healthy pattern at mid-swing (Figure 2). The 

greatest difference in anterior translation (3 mm) 

occurred in early stance when the quadriceps 

activation was greatest. The ACL deficient knee 

also exhibited increased internal rotation at push 

off, which persisted throughout the swing phase, 

and increased medial translation during the 

second half of stance.  

These altered kinematics manifested as 

substantially different cartilage loading patterns 

compared to the healthy knee (Figure 3). At the 1st and 2nd peaks of tibiofemoral loading, the anterior 

location of the center of pressure (COP) on the medial tibial plateau was 1.7 mm and 2.3 mm posterior 

to the healthy COP, respectively. On the lateral side, the COP was 1.8 mm and 0.35 mm posterior to 

healthy at 1st and 2nd peaks. The mean cartilage-cartilage contact pressure was slightly lower on both 

plateaus at 1st and 2nd peaks in the ACL deficient knee compared to healthy because a greater portion 

of the contact was shifted on to the meniscus (Figure 6).  

Figure 2 For each knee condition, the flexion angle 

was set to the measured value, while the secondary 

knee kinematics were predicted by the COMAK 

algorithm.  
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Menisci Deficient  

The menisci deficient knee experienced considerably higher cartilage contact pressures and 

increased loading in the remaining passive knee structures. Meniscal deficiency resulted an anterior 

shift of the tibia in early stance, and a posterior shift in late stance (Figure 2), demonstrating the ability 

of the menisci to provide both anterior and posterior restraint to the knee. There was also an increase 

in the internal rotation and medial translation during stance. The medial tibial COP was shifted 1.5 

mm posteriorly at 1st peak and 0.6 mm anteriorly at 2nd peak. The lateral COP was 0.5 mm anterior 

and 0.6 mm anterior at the 2nd peak. The loading in the ACL was 2.4x higher in the meniscus deficient 

knee compared to the healthy knee at peak quadriceps loading.  

 

ACL-Mensici Deficient 

 The ACL and menisci deficient knee lacked passive restraint to anterior loads, resulting in 

substantially greater anterior translation at 1st peak when the quadriceps were active. At this instance, 

the contact shifted to the posterior edge of the tibial plateau resulting in excessive contact pressures. 

The knee was not stable enough for the stochastic variation of muscle coordination patterns to be 

performed for this condition.  
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Figure 3 A comparison of tibial cartilage-cartilage contact pressure patterns for each condition over the 

stance phase of walking. Pressure maps at the 1st peak of tibiofemoral loading (17% gait cycle, 28% stance) 

are shown in Figure 8. The 2nd peak of tibiofemoral loading (48% gait cycle, 72% stance) demonstrates 

similar pressure patterns to the 80% column. The muscle activations and knee kinematics for the nominal 

simulation of the intact condition are visualized at the top of the figure.  
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Altered Neuromuscular Coordination 

 The stochastic muscle weightings 

within the COMAK cost function introduced 

variability in the predicted muscle activations 

(Figure 1), knee kinematics (Figures 4 & 5), 

cartilage contact pressures (Figure 6) and 

ACL forces (Figure 7) during walking for the 

healthy, ACL deficient, and menisci deficient 

knees. At the first peak of tibiofemoral 

loading, there was minimal variability in the 

predicted knee mechanics for all three 

conditions. Contrarily, substantial variability 

was present from the second peak of 

tibiofemoral loading through toe off and 

early swing. Mean cartilage-cartilage contact 

pressure showed greater variability on the 

lateral side compared to the medial. This late 

stance variability was caused by a 

redistribution of the hip, knee, and ankle 

torques between uni-articular and biarticular 

muscles. For example, if the ankle 

plantarflexion torque was generated by the 

gastrocnemii rather than the soleus, increased 

Figure 4 – [Top Plot] The results of each batch of 10,000 

simulations is summarized by the mean (bold centerline) 

and 5th-95th percentiles (shaded region) of anterior tibial 

translation over the gait cycle is for each condition. The 

dotted vertical lines depict the instances of the 1st and 2nd 

peaks of tibiofemoral loading. [Scatter Plots] The scatter 

plots reveal the sensitivity of anterior translation to 

activation of each muscle at the 1st and 2nd peaks in 

tibiofemoral loading. The best fit line and Spearman 

correlation coefficient were calculated for the healthy 

(black), ACL deficient (red) and menisci deficient (blue) 

conditions.   
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contact force and anterior translation 

occured at the knee. If the hip flexion 

torque was generated by the rectus femoris, 

an extension torque was applied to the 

knee which had to be overcome by the 

gastrocnemii, leading to increased knee 

contact force and anterior translation.   

In the ACL deficient knee, the 

cartilage loading was not restored to 

healthy patterns by any of the 10,000 

muscle coordination strategies tested. The 

missing restraint provided by the ACL 

resulted in increased anterior tibial 

translation for all coordination patterns, 

particularly during stance (Figure 4). In late 

stance, preferential activation of the soleus 

compared to the gastrocnemii reduced the 

anterior translation, but this effect did not 

fully restore healthy anterior translation 

patterns. However, the internal rotation 

could be restored to healthy patterns 

(Figure 5) by preferentially activating the 

lateral vastus compared to medial vastus 

during load acceptance, and the medial 

Figure 5 – [Top Plot] The mean (bold center line) and 5th-

95th percentiles of the internal rotation for the variable 

neuromuscular coordination simulations are plotted over 

the gait cycle. The dotted vertical lines coincide with the 1st 

and 2nd peaks of tibiofemoral loading. [Scatter plots] The 

sensitivity of predicted internal rotation at the 1st and 2nd 

peaks to the activation of each muscle was quantified using 

Spearman’s correlation coefficient for the healthy (black), 

ACL deficient (red), and menisci deficient (blue) conditions.  
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gastrocnemius over the lateral gastrocnemius during push off. The mean cartilage-cartilage contact 

pressures were generally similar to the healthy knee (Figure 6). The mean pressures were reduced on 

the medial plateau in late stance and mid-swing and the lateral plateau during early stance when the 

contact was shifted onto the meniscus in the ACL deficient knee.   

 

Figure 6 – [Top Plot] The mean (bold centerline) and 5th-95th percentiles (shaded) of the cartilage-cartilage 

contact pressures on the medial and lateral tibial plateaus are shown for variable neuromuscular 

coordination simulations for each condition. The vertical dotted lines indicate the 1st and 2nd peaks of 

tibiofemoral loading. [Scatter plots] The sensitivity of the mean cartilage-cartilage contact pressures was 

accessed at the 1st and 2nd peaks of tibiofemoral loading using the Spearman correlation coefficient (R).     
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In the meniscal deficient knee, the mean 

cartilage-cartilage contact pressures were 

generally higher than the healthy and ACL 

deficient knees regardless of the muscle 

coordination pattern (Figure 6). This was 

especially true at the first peak of tibiofemoral 

loading where there was no overlap between the 

5-95th percentiles of the mean medial and lateral 

pressures for the healthy and menisci deficient 

conditions. In the first half of stance phase when 

the quadriceps were active, the altered 

neuromuscular coordination strategies could not 

restore ACL loading to healthy magnitudes in the 

menisci deficient knee.    

  In this study, we used musculoskeletal 

simulation to investigate the differences in 

cartilage loading patterns during walking in 

healthy, ACL deficient, menisci deficient, and 

ACL-menisci deficient knees. We then tested 

whether altered neuromuscular coordination 

could restore healthy soft tissue loading patterns 

in the pathologic knees. In the ACL deficient 

Figure 7- [Top Plot] The mean (bold centerline) and 5th to 

95th percentiles (shaded) of ACL force for the variable 

neuromuscular coordination simulations of the intact 

(black) and menisci deficient (blue) knees. The vertical 

dotted lines indicate the instances of 1st and 2nd peaks of 

tibiofemoral loading. [Scatter Plots] The sensitivity of ACL 

force to muscle activations at 1st and 2nd peaks is assessed 

through the Spearman correlation coefficient (R).  
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knee, we found a posterior shift in the medial contact and a minor increase in contact pressure. In the 

menisci deficient knee, we found a minor posterior shift in the medial contact and a substantial 

increase in contact pressure. In the ACL-menisci deficient knee, we found the cartilage contact shifted 

to the extreme posterior boundary of the tibial cartilage, resulting in excessive contact pressures and 

subluxation of the joint. Altered neuromuscular coordination was unable to restore the cartilage 

contact locations in the ACL deficient knee nor the contact pressure magnitudes nor ACL loading in 

the menisci deficient case.  

 

Figure 8 Predicted cartilage contact pressures at the instance of 1st peak tibiofemoral loading compared 

against wear patterns found on tibial resections from total knee replacement surgeries30,31. The black 

regions indicate representative wear patterns for each knee condition. The red coloring indicates a region 

where 20% of ACL deficient knees and 46% of ACL-menisci deficient knees showed severe cartilage wear.  

The regions of altered cartilage contact pressure patterns in the injured conditions at the first 

peak of tibiofemoral loading (also peak ACL loading in the healthy knee, 18% of gait cycle) 

corresponded well with reported regions of cartilage wear (Figure 8). Two studies examining tibial 
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plateau resections from total knee replacements found a posterior shift and increased area in wear 

patterns on the medial plateau in ACL deficient knees compared to ACL intact knees. We found 

increased pressure and a posterior shift in the medial tibial COP in the ACL deficient knee compared 

to healthy at first peak. Harmon et al found menisci deficiency shifted medial plateau wear patterns 

medially towards the tibial spine30. Moschella reported that severe cartilage wear was found on the 

posterior lateral corner of the medial plateau in 20% of ACL deficient knees and 46% of ACL-menisci 

deficient knees31. We found the contact pressures increased substantially in this region with the 

removal of the meniscus in the ACL-deficient knee. These comparisons support the notion that shifts 

in cartilage loading patterns due to soft tissue injury are an important contributor to the initiation of 

osteoarthritis (OA). 

We found muscle coordination had significant effect on the predicted knee mechanics in both 

the healthy and injured conditions, particularly during the second half of stance phase. However, the 

minimal overlap of the muscle redundancy solution space between the healthy and ACL deficient knee 

in anterior translation suggests that cartilage loading patterns could not be restored through altered 

neuromuscular coordination. The meniscal deficient knee showed increased contact pressures and 

ACL loads that could not be restored through neuromuscular coordination. The interactions between 

the rectus femoris, biceps femoris, gastrocnemii, and soleus activations in late stance played a 

particularly significant role in governing the predicted knee mechanics. At this point in the gait cycle, 

hip flexion, knee flexion and ankle plantar flexion moments must be generated by the muscles. The 

distribution of the hip flexion moment between the uniarticular muscles and the rectus femoris, and 

the distribution of the ankle flexion moment between the soleus and gastrocnemii had significant 

ramifications at the knee. Coordination strategies that favored the rectus femoris to generate the hip 

flexion torque and gastrocnemii to generate the knee flexion and ankle plantar flexion resulted in the 

largest anterior translations, cartilage contact pressures, and ACL loads (when present).  
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Muscle electromyograms have been extensively studied in ACL deficient patients with widely 

variable results. One common theme among these studies is the use of co-contraction to “stiffen” or 

“stabilize” the knee. Our simulations demonstrate that the quadriceps and gastrocnemii are 

antagonists and the hamstrings are agonists to the ACL. Thus, a quadriceps and hamstrings co-

contraction will offset in anterior translation, whereas a quadriceps-gastrocnemii co-contraction will 

substantially increase the anterior translation. This prediction is consistent with in vivo measurements 

of ACL strain during transcutaneous electrical muscle stimulation of these muscle groups32. Over the 

range of neuromuscular coordination strategies we simulated, the variable co-contraction led to ranges 

in mean pressure of 0.44 MPa on the medial plateau, and 1.69 MPa at second peak. This reinforces 

the hypothesis that co-contraction leads to higher contact loads which may be detrimental to the long-

term health of the joint.  

Our simulations are likely most representative of a subset of ACL deficient patients 

characterized as “copers”. Copers achieve knee stability during functional movement through adapted 

neuromuscular coordination1. Similar to our simulations where the primary kinematics and ground 

reactions are unchanged between each knee condition, copers do not have significantly different 

marker-measured kinematics nor ground reactions from the healthy population33. Copers are 

characterized as having superior neuromuscular control, which allows them to finely adjust their 

activation patterns to achieve stability. In the highest achieving copers, minimal changes in muscle 

activation patterns from healthy controls are found33. Our simulations suggest that the mechanical 

difference between the healthy and ACL deficient knee would require either a significant change in 

the joint moments or muscle activations to restore anterior translation in the ACL deficient knee.  

Our application of the COMAK simulation framework to study muscle coordination in ACL 

injury has several limitations. The experimental gait data and knee model are from a single healthy 
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subject, and both knee geometry6 and limb dynamics are known to influence the joint mechanics in 

ACL deficient knees. Furthermore, we performed our analyses using a single set of ligament stiffness 

and slack lengths, however, there is substantial uncertainty in these parameters34, they vary widely 

among the population35, and they have a significant effect on predicted knee joint mechanics36. 

Additionally, the stochastic muscle weightings in the COMAK objective function may not have 

induced enough variability to explore the entire muscle redundancy solution space. 

With current techniques, surgical reconstruction and conservative treatment of ACL injury 

have similar rates of OA2. Our model predicts that conservative treatment will not be able to restore 

cartilage loading in an ACL deficient knee. Thus, with continued improvements towards replicating 

the function of the native ACL, reconstruction will likely prove superior in restoring tissue loading. 

However, for many patients, conservative treatment will remain a viable treatment option. The fact 

that not all ACL deficient patients exhibit signs of osteoarthritis suggests that cartilage loading is not 

the sole factor in initiating pathogenesis.  
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Figure 9 Femoral cartilage-cartilage contact pressure for each condition over the stance phase of walking.  
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 This dissertation provided four major contributions to musculoskeletal simulation and its 

application to the treatment of anterior cruciate ligament injury. A new simulation framework was 

developed to predict internal knee joint loading during functional movement. The framework was 

then leveraged to gain insight into both conservative rehabilitation and surgical reconstruction 

treatments for ACL rupture.  

  Simulation continues to demonstrate its potential to provide insight into the fundamentals of 

musculoskeletal biomechanics and improve clinical treatments. This dissertation developed simulation 

and analysis techniques to study ACL injury treatments in a novel multiscale and multifactorial 

manner.  

COMAK Simulation Framework 

 The first contribution of this dissertation was the development of the concurrent optimization 

of muscle activations and kinematics (COMAK) simulation framework. COMAK provides a general-

purpose simulation algorithm to concurrently resolve full-body and joint mechanics during functional 

movement. This enabled an investigation of the influence of neuromuscular coordination and ACL 

graft parameters on tibiofemoral cartilage loading during walking. In future work, this capability could 

provide insights beyond ACL injuries to other pathologies and joints.  
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Several improvements could be made to the simulation framework and analyses methods in 

future work. The probabalistic sensitivity analyses performed in the previous chapters can be extended 

to study multi-parameter interactions. The parametric nature of the model can be extended with a 

statistical shape model to study the influence of articular geometry on knee mechanics. Additionally, 

gait dynamics of a population could be parameterized to study their effect on joint loading. The 

parametric framework introduced in this dissertation will enable straight forward integration of these 

advancements for future studies of muscle driven joint mechanics.  

 The treatment of muscle redundancy as a modeling uncertainty in this dissertation provides a 

new perspective on a problem that remains unsolved in biomechanics. Chapter 2 provides a detailed 

description of this methodology and its application to study the influence of neuromuscular 

coordination on healthy knee mechanics during walking. Here, quantifying the sensitivity of predicted 

joint mechanics to muscle activity provides a simple interpretation of a single muscle’s influence on 

the knee function. Chapter 5 provides a demonstration where establishing the mechanical bounds on 

the muscle redundancy solution space provided the novel insight that soft tissue loading could not be 

restored in an ACL deficient knee. 

High Throughput Computing 

 The second important contribution of this dissertation was the introduction of high 

throughput computing (HTC) resources to the musculoskeletal simulation field, which enables a new 

category of computational methods to be leveraged. The brute computational strength of HTC 

resources now enable ‘relatively’ simplistic approaches to answer difficult research questions. An 

example of this exists in Chapter 5. Here the feasible muscle redundancy solution spaces of the healthy, 

ACL deficient, and menisci deficient knees were compared using 30,000 unique simulations. This 

showed that no altered neuromuscular coordination strategy exists that could restore soft tissue 
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loading in the injured knees. We had previously failed to solve this problem using optimization based 

methods to search for a coordination strategy to restore cartilage loading in an ACL deficient knee.  

 

Conservative Treatment 

 Conservative rehabilitation of ACL injuries is an important treatment option for copers, and 

patients willing to adapt their functional activities to avoid instances of knee instability. A better 

fundamental understanding of the influence of muscles on knee joint mechanics will likely provide 

important insights to improve rehabilitation protocols. The recent introduction of concurrent 

simulation techniques will enable a new generation of computational studies of muscle driven joint 

mechanics.    

The third contribution of this dissertation was the application of the COMAK simulation 

framework to study muscle coordination strategies in ACL deficient knees. This demonstrated the 

inability of neuromuscular coordination to restore cartilage and soft tissue loading patterns in injured 

knees, providing valuable insight for clinicians and patients considering treatment options. Despite 

this finding, conservative treatment remains a viable option for many patients and there are numerous 

examples of individuals who cope with ACL deficiency and do not exhibit signs of early osteoarthritis. 

In future, the COMAK simulation framework could be adapted to study the capacity of altered limb 

dynamics and neuromuscular coordination patterns to influence joint stability. These methods could 

provide the sensitivity of joint stability to individual muscle activations throughout the gait cycle and 

may provide insight to physical therapists.  
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ACL Reconstruction 

The ACL reconstruction procedure has undergone several iterations towards replicating the 

anatomy and function of the native ACL with minimally invasive techniques. The evolution from 

extra-articular to intra-articular reconstruction, introduction of arthroscopic technologies, and 

improvement in techniques for tunnel positioning and graft fixation have led to better short clinical 

outcomes. However, risk for post-traumatic osteoarthritis remains high in this population resulting in 

considerable opportunity to this improve treatment of ACL injuries. 

The fourth contribution of this dissertation was to demonstrate the importance of replicating 

the geometry of the intact contralateral ACL when performing the ACL reconstruction surgery. Our 

recent work using dynamic imaging and computer simulation suggests that replicating the patient-

specific ACL anatomy is critical to restore pre-injury soft tissue loading patterns. The sagittal plane 

angle of the ACL was correlated with tibiofemoral kinematics measured with dynamic MRI during a 

loaded flexion-extension task (Appendix). This cause-effect relationship was then demonstrated using 

forward dynamic musculoskeletal simulations of the open-chain task. The COMAK simulation 

framework extended these findings to walking. A more vertical sagittal plane graft angle was shown 

to increase anterior translation and internal rotation, and shift the center of pressure on the medial 

tibial cartilage posteriorly during stance. Thus, improvements in surgical techniques should be focused 

on better replicating the geometry of the native ACL. Enabling high surgical precision through 

advanced imaging, surgical planning, and robotic and patient-specific surgical tools may provide the 

next break through to further improving this treatment. 

 This dissertation developed a multiscale musculoskeletal simulation framework to study 

cartilage and ligament loading during muscle driven movements. The framework leveraged high 
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throughput computing to perform probabilistic analyses that revealed the influence of neuromuscular 

coordination and ACL graft parameters on functional knee mechanics. The application of the 

framework to study knee joint mechanics provided several insights into conservative and surgical 

treatments of ACL injury. In the future, this framework will hopefully provide insights into additional 

joint pathologies and where muscle driven joint mechanics contribute to treatment outcomes. 
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Title: 

The Effect of Cartilage Thickness on Tibiofemoral Contact Pressure During Gait 

Introduction: 

Articular cartilage loading is often linked with tissue health, with sufficient loading needed to enable 

tissue homeostasis but excessive loading potentially leading to tissue degeneration and osteoarthritis 

(OA) [1]. However, the complexity of measuring or calculating cartilage loads during movement has 

hindered quantitative research on the topic. Cartilage contact pressure estimates have recently gained 

clinical relevance as high tibiofemoral cartilage pressures calculated from standing radiographs, were 

shown to predict the development of pain and OA [2,3]. However, the underlying morphological factors 

that can lead to high cartilage contact pressure are not well understood. One theory is that cartilage 

thinning leads to increasingly higher pressures resulting in a “downward spiral” of cartilage tissue 

degeneration [1]. To assess the link between cartilage thinning and articular contact pressures, we 

developed a novel musculoskeletal simulation framework capable of calculating tibiofemoral cartilage 

pressures during gait. The objective of this study was to investigate the effect of cartilage tissue 

thickness on the magnitude and distribution of tibiofemoral cartilage contact pressures during the 

stance phase of gait.      

Methods: 

We developed a three-body dynamic knee model from segmented MR images of a healthy young female 

(age = 22, height = 179 cm, mass =79 kg ).The model included six degree-of-freedom (dof) tibiofemoral 

(TF) and patellofemoral (PF) joints, nine ligaments and triangulated high resolution meshes of cartilage 

surface geometries. The ligaments were modeled as bundles of nonlinear springs which spanned from 

the footprint of the origin to the insertion, with wrapping included about bony structures. Cartilage 

contact pressure was calculated using an elastic foundation model, in which the pressure is a nonlinear 

function of the depth of penetration of two articulating cartilage meshes. Cartilage penetration depth 

was computed using a ray casting technique to find the closest point between a triangle in the distal 

segment (e.g. tibia plateau) and the proximal cartilage surface (e.g. femoral condyles) [4]. Note that 

cartilage thickness at a point represents the sum of the cartilage thicknesses of the two articular 

surfaces at the point of contact. The full knee model was shown to replicate the in vivo kinematic 

behavior of the knee as measured by dynamic MRI.  



165 
 

A musculoskeletal model was used to simulate tibiofemoral and patellofemoral mechanics during gait. 

The subject-specific knee model was integrated with a generic lower extremity musculoskeletal model 

that included 44 Hill-type muscle-tendon units acting about the hip, knee and ankle joints [5]. The lower 

extremity model was first scaled to match the subject’s anthropometrics, and then the subject-specific 

bones were aligned to the generic femur, tibia and patella. Whole body kinematics and ground reaction 

forces were measured from the subject during overground walking at a preferred speed. A Computed 

Muscle Control (CMC) co-simulation framework was then used to modulate the lower extremity muscle 

excitations to match hip, knee flexion and ankle angular trajectories throughout a full gait cycle (Fig. 1) 

[6]. Note that the CMC algorithm only tracks knee flexion, such that the other 5 TF dof and all 6 PF dof 

evolved naturally as a result of external loads, muscle forces, ligament tension and articular contact 

pressures. We first simulated gait using the variable cartilage thickness measured over the cartilage 

surfaces in the MR images. The gait simulations were then re-generated with assumed constant TF 

cartilage thicknesses of 2, 4, 6, 8 and 10mm. The surface geometry of the cartilage surfaces was 

unaltered between simulations. 

Results:  

Both the tibia plateau pressure magnitude and contact area were greater on the medial side relative to 

the lateral side at the first peak of tibiofemoral loading during the stance phase of gait. Overall, the peak 

and average contact pressures increased nonlinearly as the cartilage thickness decreased (Fig. 2), with 

pressure rising substantially as cartilage thickness dropped below 4 mm. In the medial compartment, 

the peak pressure increased from 8.3 MPa to 18.9 MPa (127%) and the average pressure increased from 

1.5 MPa to 3.8 MPa (151 %) between the simulations with cartilage thicknesses of 10mm and 2mm.  

Correspondingly, the medial tibial plateau contact area decreased by 63% and lateral contact area 

decreased by 45% between the 10mm and 2mm thicknesses. The distribution of the pressure over the 

contact area also was greatly affected by cartilage thickness, with the thinner cartilage showing a 

greater percentage of the contact area experiencing high pressures (Fig. 3).  Similar effects of cartilage 

thickness on pressure and contact area were obtained at the time of the second peak in the stance 

phase TF loading.  

Discussion: 

The relationship between cartilage morphology and tissue loading is important for understanding the 

causes and treatment of OA. Our simulations suggest that cartilage tissue thickness has a highly 



166 
 

nonlinear effect on contact pressures during the stance phase of gait. In particular, combined cartilage 

tissue thicknesses below 4 mm were found to lead to substantially higher peak and average cartilage 

contact pressures. This change was the result of thin cartilage producing a substantially smaller 

articulation contact area, necessitating higher pressures to generate the same net joint contact load. 

Use of a variable thickness cartilage as measured from MR images produced average and peak contact 

pressure estimates that were between values obtained with constant 4 and 6 mm thickness tissues. 

Thus, it would appear that the healthy tissue morphology is adapted to be in a range that makes the 

tissue pressure less sensitive to the thickness. The computational framework is formulated in a way that 

allows future study on the influence of other morphological features (e.g. curvature) and walking 

mechanics on cartilage pressures. Such information could prove beneficial for rigorously assessing OA 

risk and investigating clinical interventions that can mitigate that risk. 

Significance: 

This study suggests that tibiofemoral cartilage pressure during gait varies nonlinearly with cartilage 

tissue thickness, with a threshold minimal thickness below which one sees substantially decreased 

contact area and increased localized pressure. This morphologically altered mechanical loading could 

contribute to the downward spiral of cartilage degeneration seen in OA. 
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INTRODUCTION 

 Articular cartilage overloading during gait is recognized as a 

factor affecting the development and progression of knee osteoarthritis 

(OA). Accordingly, the external Knee Adduction Moment (KAM) is 

often used as a surrogate measure of contact force on the medial 

compartment of the tibiofemoral joint, where OA often develops (1). 

However, the KAM may not be an indicator of localized tissue stress 

and strain which can induce damage over multiple loading cycles. 

Thus, it may be more relevant to estimate cartilage contact pressure 

and tissue deformation during gait. However, current gait models 

employ a highly simplified knee joint model that only allows for 

estimates of net joint contact loads (2). To overcome this limitation, 

we developed a multi-body dynamic knee model that includes 

representations of the major ligaments and articular surfaces of the 

tibiofemoral and patellofemoral joints (3). The increased degrees of 

freedom included in this model allow for prediction of cartilage 

pressures in the context of full-body walking simulations.  

 There are three objectives of this study. First, to introduce an 

Enhanced Static Optimization (ESO) simulation routine to 

simultaneously calculate muscle forces, cartilage pressures, ligament 

forces, and secondary knee kinematics from subject-specific gait 

measures. Second, to evaluate whether the KAM is predictive of 

medial cartilage contact pressures during gait. Finally, to investigate 

how variations in cartilage morphology and material properties can 

alter cartilage contact pressures and deformations.        

    

METHODS 

A 3 body, 12 DOF knee model was developed from MR images 

of a healthy adult female (1.65 m, 61 kg). Fourteen ligament bundles 

were represented by nonlinear elastic springs, with wrapping surfaces 

used to prevent penetration of bony geometries. Articular cartilage 

surfaces were segmented from the images and represented by high 

resolution meshes. Given the bone segment positions in space, 

cartilage contact pressures were computed by detecting overlap 

between articulating surfaces, and using an elastic foundation model to 

compute pressure based on the depth of penetration and an assumed 

elastic modulus for cartilage tissue. The predictive capacity of the 

model was validated by comparing simulated passive and active knee 

motion with in vivo 3D knee kinematics measured with dynamic MRI 

(3). The knee model was integrated into an existing lower extremity 

musculoskeletal model (2), which included 43 muscles acting about 

the hip, knee and ankle joints. 

 

Figure 1 – Multibody 12 degree of freedom knee model and 
representative pressure map 

 

To estimate tissue loading and knee kinematics during gait, we 

developed the ESO routine. Similar to standard static optimization, 

ESO uses numerical optimization to calculate active muscle forces 

needed to satisfy whole body equations of motion. However, ESO also 
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simultaneously calculates the secondary joint kinematics (5 

tibiofemoral and 6 patellofemoral DOF) which induce ligament forces 

and cartilage contact pressures that, along with the estimated muscle 

forces, generate the measured primary joint accelerations and zero 

accelerations in the secondary knee DOF. The formal cost function of 

the optimization minimizes the sum of the squared muscle activations, 

weighted by muscle volume. A regularization term, the sum of squared 

changes in secondary kinematics from the previous time step, is used 

to constrain the solution over time. 

We used the model and ESO routine to estimate internal tissue 

loads from measured gait kinematics and ground reaction forces 

collected on the same subject for which we constructed the knee 

model. These analyses were repeated for 5 values of tibiofemoral 

cartilage thicknesses (combined tibial and femoral thickness ranging 

from 2mm-10mm) and 6 values of cartilage modulus of elasticity (5 

MPa – 25 MPa). For each solution, we computed the mean contact 

pressure and mean percent deformation for the contacting cartilage on 

both the medial and lateral tibial plateau. 

 

RESULTS  

 

Figure 2 - Knee adduction moment, medial contact force and  
medial mean contact pressure over a simulated gait cycle for 
various cartilage thicknesses 

 

The nominal simulation results indicate that the KAM shows a 

similar temporal trend over the gait cycle to the medial contact force 

and the mean medial cartilage pressure. However, as the thickness of 

the cartilage is varied from 2 mm to 10 mm the mean cartilage 

pressure varies by a factor of 2 while the knee adduction moment 

remains virtually unchanged (Figure 2). The medial contact force also 

shows nearly no change. The same results were seen for variations in 

the cartilage elastic modulus, where the mean pressures showed 

substantial changes over the gait cycle between elastic modulus 

values, but the KAM and medial contact force remained unchanged 

(not shown). 

Solving the ESO routine with different cartilage thicknesses and 

elastic moduli had a relatively small effect on the frontal plane knee 

alignment, inducing only subtle changes in the KAM. However, 

cartilage properties substantially altered both the mean contact 

pressure and percent cartilage deformation (Figure 3). 

Decreasing cartilage elastic modulus from 25 to 5 MPa reduced 

the mean contact pressure from 8 to 5 MPa, but increased the cartilage 

deformation from 9% to 22%. In contrast, decreasing the combined 

cartilage thickness from 10 to 2 mm resulted in increases in both the 

mean contact pressure (4.2 to 7.6 MPa) and the mean cartilage 

deformation (20% to 30%). 

 

Figure 3 – The effect of cartilage thickness and elastic modulus on 
medial tibial cartilage mean pressures and mean deformations 
(depth of cartilage overlap/cartilage thickness*100%) at the second 
peak of tibiofemoral force during gait 

 

DISCUSSION  

 We demonstrated the capability of our 12 DOF knee model and 

EOS simulation routine to predict cartilage contact pressures during 

movement. This novel approach allows calculation of localized 

cartilage pressures in the knee joint and has great promise for better 

predicting the development of OA. 

 Our simulation results indicate that the KAM does show the same 

temporal trends as the medial contact force and mean pressure over a 

gait cycle. However, the KAM and medial contact force are not able to 

predict changes in pressure that arise from changes in material 

properties of the cartilage. These results are similar to studies of loads 

measured from instrumented knee implants which showed the trend of 

the KAM correlates well to the medial knee contact force [4], however 

the KAM was less able to predict changes in the medial knee contact 

force associated with gait modifications [5]. 

 The sensitivity of cartilage contact pressure and deformation to 

cartilage properties is relevant to consider in the context of OA. As 

OA progresses, cartilage becomes thinner and the collagen network is 

damaged leading to a decrease in elastic modulus [6]. Our results 

suggest these changes can alter both the localized cartilage tissue 

stresses and strains, potentially leading to further cartilage damage and 

degeneration. Further study is needed to assess how these observations 

vary with alternative gait patterns and different cartilage surfaces. 
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INTRODUCTION 
Cartilage loading patterns are an important 
aspect to understand the pathogenesis of knee 
osteoarthritis (OA). Since there is no viable 
method to measure joint loads in vivo, contact 
patterns must be estimated from computational 
models. Knee models often use an elastic 
foundation representation to estimate contact 
pressure [1,2,3]. However, the common 
formulation of the elastic foundation model for 
cartilage [3] assumes the two articulating cartilage 
surfaces have the same elasticity and thickness. 
This assumption does not account for spatially 
varying changes in cartilage thickness or 
elasticity between surfaces. In this study, we 
present an improved formulation of the elastic 
foundation model which allows for spatially 
varying thickness and material properties of the 
contacting surfaces. We demonstrate the 
importance of this improved formulation by 
simulating gait with variable cartilage thickness 
maps measured from magnetic resonance (MR) 
images. 
 
METHODS 

 
Fig 1: Multibody knee model and thickness map of 
tibial cartilage. The maximum thickness on the medial 
and lateral surfaces are 2.4 and 4.0 mm, respectively  

We developed a multi-body knee model that 
included six DOF representations of the 
tibiofemoral and patellofemoral joints. Bone 
segments, cartilage surfaces and ligament 
attachments points were segmented from static 
MR images of a healthy young female (age=23) 

knee. The knee model was incorporated into a 
generic multibody musculoskeletal model [4] that 
included 44 muscle-tendon units acting about 
the hip, knee and ankle. We validated the knee 
model by comparing simulated knee kinematics 
with direct in vivo measures obtained using 
dynamic MRI [5].  
 
Whole body kinematics and ground reactions 
were recorded while the subject walked 
overground in a motion analysis laboratory. At 
each frame of a gait cycle, we then used an 
enhanced static optimization (ESO) routine [6] to 
calculate muscle forces, patellofemoral 
kinematics and secondary tibiofemoral 
kinematics that minimized a weighted sum of 
muscle activations squared while satisfying 
overall dynamic constraints. The constraints 
required that the patellofemoral kinematics and 
secondary tibiofemoral kinematics produce 
ligament loads and cartilage contact pressures 
that, together with the muscle forces, generate 
the measured hip, knee and ankle accelerations. 
 
Tibiofemoral and patellofemoral cartilage 
contact pressures were computed from the knee 
kinematics based on the depth of rigid body 
penetration of the contacting cartilage meshes. 
Depth of penetration for each triangle in a mesh 
was computed using a ray casting technique [3]. 
Contact pressure was then derived according to 
plane-strain elasticity theory, which assumes 
each cartilage surface represents an elastic 
layer of finite thickness bonded to a rigid 
subsurface. Previous applications computed 
contact pressure, 𝑝, via [3]: 
 

𝑝 = −
(1 − 𝑣)𝐸

(1 + 𝑣)(1 − 2𝑣)
ln [1 −

𝑑

ℎ
] (Eq. 1) 

 
where 𝐸 is elastic modulus, 𝑣 is poissons ratio, 𝑑 
is the penetration depth and ℎ is the combined 
thickness of the two cartilage surfaces. To allow 
each cartilage surface to have unique definitions 
of 𝐸, 𝑣 and ℎ, we defined separate elastic 
foundation models for each surface: 
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𝑝1 = −
(1 − 𝑣1)𝐸1

(1 + 𝑣1)(1 − 2𝑣1)
ln [1 −

𝑑1
ℎ1
] (Eq. 2) 

𝑝2 = −
(1 − 𝑣2)𝐸2

(1 + 𝑣2)(1 − 2𝑣2)
ln [1 −

𝑑2
ℎ2
] (Eq. 3) 

 
We introduced two additional equations resulting 
from the equilibrium of pressures in pairs of 
contacting triangles, and the equivalence of the 
sum of the individual surface penetration depths 
to the total penetration depth. 
 

𝑝1 = 𝑝2 (Eq. 4) 
𝑑1 + 𝑑2 = 𝑑 (Eq. 5) 

 
Simultaneous solution of Eq. (2-5) results in the 
pressure and unique deformation for every 
triangle on each of the cartilage surfaces.     
 
We simulated gait with both elastic foundation 
formulations (Eq. 1, and Eq. 2-5). Cartilage 
pressures computed using constant cartilage 
thicknesses of 2, 4, 6 and 8 mm and the lumped 
parameter model were compared against the 
improved formulation using variable cartilage 
thickness measured directly from the MRI 
images.  
 
RESULTS AND DISCUSSION 
 

 
Fig 2: Contact metrics of the medial tibial plateau 

The gait simulations indicate that the previous 
formulation of the elastic foundation model using 
constant thicknesses of 2, 4, 6, and 8 mm result 
in 23.4, -4.3, -16.7, -22.9% differences in the 
mean medial tibial contact pressures 
respectively at the second peak of tibiofemoral 
contact force during stance (Fig. 2). 
 
The spatial distribution of cartilage pressure 
showed substantial change as well, 
demonstrated by the cartilage pressure maps 
shown in Fig. 3. 
 

 
Fig 3: Tibial cartilage pressure at second peak of TF 

force for constant and variable cartilage thickness 

CONCLUSIONS 
We introduced an improved formulation of the 
elastic foundation model for use in gait 
simulations which allows for cartilage thickness 
and elastic properties to vary between contacting 
surfaces. The inclusion of variable cartilage 
thickness in gait simulations resulted in 
substantial differences in contact pressures 
compared to simulations using constant cartilage 
thickness. Additionally, the improved contact 
model formulation allows for future research on 
cartilage defects and disease progression where 
altered cartilage thickness and elastic properties 
are present. 
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INTRODUCTION 

 

Subject-specific multibody models of the knee joint 

provide valuable insight into the mechanics of the 

healthy and pathologic knee during movement. 

However, the quality of the predictions of these 

models is directly dependent on the accuracy of the 

model parameters. While knee model geometries 

can be segmented from magnetic resonance (MR) 

images, other parameters such as ligament stiffness 

and reference strains must be estimated. As a result, 

the uncertainty in these ligament parameters can 

propagate into the predicted knee mechanics.   The 

objective of this study was to use a probabilistic 

approach to evaluate the propagation of variations 

in ligament properties onto knee kinematics and 

cartilage contact pressures.       

 

METHODS 

 

 A three body, 12 DOF knee model was developed 

from MR images of a healthy adult female (1.65 m, 

61 kg). Fourteen ligaments were represented by 

bundles of nonlinear elastic springs, with wrapping 

surfaces included to prevent penetration of bony 

geometries. Articular cartilage surfaces were 

segmented from the MR images and represented by 

high resolution meshes. Cartilage contact pressures 

were calculated by detecting overlap between the 

articulating surfaces and using an elastic foundation 

model to determine pressure based on the depth of 

penetration. The knee model was integrated into an 

existing lower extremity musculoskeletal model [1], 

which included 43 muscles acting about the hip, 

knee and ankle joints. The predictive capacity of the 

model was validated by comparing simulated 

passive and active knee kinematics with in vivo 3D 

knee kinematics measured with dynamic MRI [2].  

 

Whole body kinematics and ground reactions were 

recorded while the subject walked overground in a 

motion analysis laboratory. At each frame of a gait 

cycle, an enhanced static optimization (ESO) 

routine [3] was used to calculate muscle forces, 

patellofemoral kinematics and secondary 

tibiofemoral kinematics that minimized a weighted 

sum of squared muscle activations while satisfying 

overall dynamic constraints. The constraints 

required that the muscle forces and internal knee 

loads (contact pressures, ligament forces) produced 

by the optimized knee kinematics generate the 

measured hip, knee (flexion) and ankle 

accelerations. 

 
Figure 1: Multibody 12 degree of freedom knee 

model and representative pressure map 

 

We performed a monte carlo analysis to evaluate 

the propagation of uncertainty in ligament stiffness 

and reference strain values into predicted joint 

mechanics. Nominal values were determined from 

previous models [4] and tuned to ensure predicted 

passive kinematics reproduced measured passive 

kinematics. In the probabilistic analysis, ligament 

stiffness and reference strains were represented by 

normal distributions centered at the nominal values 

with standard deviations of 30% of the mean and 

0.2, respectively [5]. A total of 2000 simulations 

were performed using a high throughput computing 

grid using randomly selected values from the 

parameter distributions. 
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RESULTS AND DISCUSSION 
 

The predicted tibiofemoral kinematics showed 

variability in each of the degrees of freedom. 

Internal-external rotation showed the most 

variability with the maximum standard deviation 

(5.6o) occurring during swing phase. The superior-

inferior translation and medial-lateral translations 

showed similar variability to the anterior-posterior 

translation. 

 

 
Figure 2: Anterior translation and internal rotation 

of the tibiofemoral joint during gait. The black line 

and shaded area represent the mean ± 2 standard 

deviatons of the monte carlo simulations. 

 

Metrics of articular contact such as mean pressure 

and contact area also showed substantial variability. 

The mean pressure on the medial and lateral tibial 

plateaus had a maximum standard deviation of 0.52 

MPa and 0.86 MPa, respectively. The medial and 

lateral contact areas showed maximum standard 

deviations of 45.9 mm2 and 48.0 mm2. 

 

Further analysis will reveal the individual ligaments 

which contribute the most to the variability in the 

predicted results. This will provide valuable insight 

into the function of specific ligaments during 

walking. 

 

  

 

  
Figure 3: Mean pressure and contact area of the 

medial tibial plateau over a gait cycle. The blue line 

and shaded area represent the mean ± 2 standard 

deviatons of the monte carlo simulations. 

 

CONCLUSIONS 

 

The probabilistic analysis showed that variations in 

ligament stiffness and reference strains produce 

substantial variability in the predicted tibiofemoral 

kinematics and contact mechanics. This indicates 

that future work is required to accurately determine 

the values of the ligament parameters. 
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Introduction 

Computational multibody dynamic 
models provide an efficient means to study the 
influence of soft tissue injury on functional knee 
mechanics. We recently introduced a novel 
validated multibody knee model that can predict 6 
DOF tibiofemoral (TF) and patellofemoral (PF) 
kinematics during walking [1]. In this study, we 
used a Monte Carlo analysis to assess how 
injury-induced changes in ligament properties 
can affect tibiofemoral kinematics and cartilage 
contact pressure during the stance phase of gait.   
 
Methods 

A subject-specific knee model was created 
from MR images. Fourteen ligaments were 
represented by bundles of nonlinear elastic 
springs [2], with wrapping surfaces included to 
prevent penetration of bony geometries. TF and 
PF cartilage contact pressures were calculated 
using an elastic foundation model. The knee was 
integrated into a lower extremity musculoskeletal 
model [3] (Fig. 1a), and has been validated 
against in vivo kinematics measured via dynamic 
MRI [1].  

Whole body kinematics and ground reactions 
were measured during overground, preferred-
speed walking. At each time step in gait, an 
Enhanced Static Optimization (ESO) routine [4] 
simultaneously calculated muscle forces, 
patellofemoral and secondary tibiofemoral 
kinematics, ligament forces and cartilage contact 
pressures. This routine minimized a weighted 
sum of squared muscle activations while 
satisfying the constraint that the muscle forces, 
and internal knee loads generate the measured 
hip, knee (flexion) and ankle accelerations. 

A Monte Carlo analysis was performed in 
which the ligament stiffness and reference strains 
were randomly varied. Each ligament’s stiffness 
and reference strain were represented as 
Gaussian variables with standard deviations of 
30% of the nominal stiffness and 0.02, 
respectively [5]. A total of 2000 gait simulations 
were performed on a high-throughput computing 
cluster. We assessed the correlation (Pearson’s 
correlation coefficient R) of individual ligament 

parameters to kinematics and contact metrics at 
the first peak of tibiofemoral loading   
Results 

The anterior cruciate ligament (ACL) acted 
as the primary restraint to anterior translation in 
mid-stance. The medial (MCL) and lateral 
collateral ligaments (LCL) had the greatest 
influence on tibial rotation from heel strike 
through mid-stance. Tibial plateau contact 
location was dependent on the ACL, MCL and 
LCL properties, while pressure magnitudes were 
most dependent on the ACL (Fig. 1b). A 
decrease in ACL stiffness increased average 
contact pressure in mid-stance, with the pressure 
migrating posteriorly on the medial tibial plateau 
(Fig. 1c). 

 
Conclusions 

Our results illustrates the strong effect that 
injury or surgically changed ACL properties can 
have on cartilage contact pressure patterns. 
These altered mechanics could serve as a 
precursor to the early onset of osteoarthritis often 
seen in ACL injured individuals (REF). 
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Figure 1  (a) Lower extremity model (b) ACL stiffness 

effects at mid-stance (c) Tibial pressure maps at mid-stance 
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Introduction 

Knowledge of in vivo knee mechanics such as cartilage 

contact pressures and ligament forces during functional 

movements is valuable for the design of surgical treatments 

and rehabilitation protocols for soft tissue injury. However, as 

these quantities cannot be measured in vivo, it is compelling to 

predict them through computational simulation. Accordingly, 

we have developed a multibody knee model and Enhanced 

Static Optimization (ESO) simulation framework to predict 

knee mechanics during movement. The objective of this study 

is to give an overview of ESO and demonstrate its ability to 

predict knee mechanics during a variety of functional tasks 

including walking, running, jumping and lunging.  

  

Figure 1: Lower limb musculoskeletal model with multibody 12 

degree of freedom knee model and ESO predicted pressure map at 

first peak of tibiofemoral loading during walking 

Methods 

The multibody knee model was constructed from MR 

images of a healthy adult female (1.65 m, 61 kg, age: 23). It 

consists of three bodies (femur, patella, tibia), with 6 degree of 

freedom tibiofemoral and patellofemoral joints. The model 

includes the major ligaments and posterior capsule of the knee 

represented as 14 bundles of nonlinear springs [1]. Articular 

cartilage surfaces are represented by high resolution triangular 

meshes segmented from the MR images. Cartilage contact 

pressures are calculated by detecting overlap between the 

articulating surfaces and using an elastic foundation model to 

determine pressure based on the depth of penetration [2]. The 

knee model was integrated into an existing lower extremity 

musculoskeletal model [3], which included 43 muscles acting 

about the hip, knee and ankle joints. The predictive capacity 

of the model was validated by comparing simulated passive 

and active knee kinematics with in vivo 3D knee kinematics 

measured with dynamic MRI [4]. 

The ESO simulation framework is formulated similarly to 

standard static optimization in that it is posed as an 

optimization problem to solve for a set of muscle forces which 

generate the measured primary joint accelerations while 

minimizing the weighted sum of muscle activations squared 

and satisfying the overall dynamic constraints. However, in 

ESO, the patellofemoral and secondary tibiofemoral 

kinematics are included in the optimization as design 

variables. Additionally, the accelerations in these degrees of 

freedom are constrained to be zero. As a result, at every time 

point in a simulation, ESO simultaneously predicts muscles 

forces, patellofemoral and secondary tibiofemoral kinematics, 

ligament forces and cartilage contact pressures. The overall 

dynamic constraints require that the muscle forces and internal 

knee loads (contact pressures, ligament forces) produced by 

the optimized knee kinematics generate the measured hip, 

knee (flexion) and ankle accelerations. 

Results and Discussion 

To evaluate the robustness of our model and ESO, we 

applied the simulation framework to submaximal exertion, 

maximal exertion and high impact movements. Whole body 

kinematics and ground reaction forces were recorded in a 

motion analysis laboratory while a subject performed a variety 

of common and rehabilitation exercises. The ESO framework 

was then used to simulate the knee mechanics and the 

predicted cartilage pressure maps of the activities were 

compared. For each of the exercises, the simulations 

converged and produced contact forces similar to those 

measured using an instrumented implant [5]. As a result, the 

ESO framework proved capable to simulate a variety of human 

movements including athletic movements and those with 

extreme joint angles. 
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INTRODUCTION:   

     Understanding influence of the orientation of the anterior cruciate ligament (ACL) on knee mechanics is important for improving ACL reconstruction 

surgeries and their long term outcomes. Previous approaches to study effects of ACL orientation have included cadaveric experiments [1] and retrospective 

motion capture studies of gait following ACL reconstructions [2]. These studies have provided an understanding of ACL geometry effects on knee laxity 
under simple loading conditions and its statistical relationship with joint torques during gait. However, such experimental studies are limited in terms of the 

metrics which can be directly measured, and difficulties in isolating the causal influence of the ACL geometry in isolation of other confounding variables. 

Multibody computational models can provide complimentary insight to experimental studies, by directly simulating the effects of ACL geometry on 
tibiofemoral kinematics, cartilage contact pressures, and ligament loading during gait. 

METHODS:   

     A three body, 12 DOF knee model was developed from MR images of a healthy adult female (1.65 m, 61 kg). Fourteen ligaments were represented by 
bundles of nonlinear elastic springs, with wrapping surfaces included to prevent penetration of bony geometries. Articular cartilage surfaces were segmented 

from the MR images and represented by high resolution meshes. Cartilage contact pressures were calculated by detecting overlap between the articulating 

surfaces and using an elastic foundation model to determine localized pressure based on the degree of cartilage overlap. The knee model was integrated into 

an existing lower extremity musculoskeletal model [3], which included 43 muscles acting about the hip, knee and ankle joints. The predictive capacity of the 

model was previously validated by comparing simulated passive and active knee kinematics with in vivo measurements obtained with dynamic MRI [4].  

     Whole body kinematics and ground reactions were recorded while the subject walked overground in a motion analysis laboratory. At each frame of a gait 
cycle, an enhanced static optimization (ESO) routine [5] was used to calculate muscle forces, secondary tibiofemoral and patellofemoral kinematics that 

minimized a weighted sum of squared muscle activations while satisfying overall dynamic constraints. The constraints required that the muscle forces and 
internal knee loads (contact pressures, ligament forces) produced by the optimized knee kinematics generate the measured hip, knee (flexion) and ankle 

accelerations. An initial simulation was performed with the nominal knee model, followed by two sets of simulations in which the ACL femoral attachments 

were varied by +10, +5, -5 and –10 mm in the anterior-posterior and medial lateral directions respectively. The predicted tibiofemoral kinematics, tibial 
cartilage contact and ACL loads were compared for all simulations.  

RESULTS:   

     The orientation of the ACL in both the sagittal and coronal planes had substantial effects on knee mechanics. As the ACL became more vertical in the 
sagittal plane, the maximum tibiofemoral anterior translation and external rotation increased during stance phase by 2.9 mm and 2.2o respectively, from the 

most posterior to the most anterior femoral ACL attachments. Medial translation and adduction varied by less than 1 mm and 1o respectively. As the ACL 

became more vertical in the coronal plane, the maximum anterior (3.0 mm) and medial (2.1 mm) translations and adduction (1.5o) and external rotations (5.1 
o) showed considerable change during stance.  

    Coronal plane orientation showed a stronger effect on the tibial contact mechanics than the sagittal plane orientation. A more horizontal ACL in the 

coronal plane led to a posterior migration of the center of pressure COP (4.4 mm) and an increase of 30% of the ratio of mean medial and lateral plateau 
pressures at the first peak of stance. A more vertical ACL in the sagittal plane showed a similar posterior migration of the COP (1.2 mm) and increase of 

medial lateral pressure ratio (12 %), but of smaller magnitude (Figure 2). Conversely, the loading of the ACL during stance phase was more strongly 

affected by the sagittal plane orientation. The peak ACL loading during stance increased by 40% as the ACL became more vertical in the sagittal plane, and 
increased by 23% across all coronal plane angles.  

DISCUSSION: 

     The results of this study indicate that the orientations of the ACL in both the sagittal and coronal planes have substantial effects on knee mechanics. The 
coronal plane orientation shows a greater influence on the tibial plateau contact pressures, while the sagittal plane orientation showed a larger effect on the 

loading of the ACL. The effect of the ACL orientation on kinematics, contact pressures and ACL loadings have not been reported previously for a functional 

movement such as gait.  
SIGNIFICANCE: 

     This study reinforces the importance of considering the geometry of the ACL graft during reconstruction surgeries as even small variations can lead to 

substantial differences in tibiofemoral mechanics during gait. 
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INTRODUCTION 

 

Neuromuscular coordination and internal knee tissue 

mechanics are inherently coupled. This coupling is 

especially apparent in the pathologic knee, where 

ligament and cartilage loads are highly dependent on 

muscle forces, and neuromuscular coordination is 

often altered to accommodate the pathologic joint. A 

better fundamental understanding of this coupling 

during locomotion could improve neuromuscular 

retraining approaches for pathologies such as 

anterior cruciate ligament injury and osteoarthritis.  

 

The complex coupling of muscle and soft tissue 

loading about the knee creates potential for 

computational modeling to provide valuable insight. 

While musculoskeletal models have long been used 

to study neuromuscular coordination in movement, 

existing models often assume a highly simplified 

representation of the knee. At the other extreme, 

complex knee models predict the interaction of 

muscle, ligament and cartilage tissue loads without 

considering neuromuscular coordination. We have 

recently introduced a novel multibody knee model 

and probabilistic simulation framework to study the 

interaction of neuromuscular coordination and 

internal knee mechanics during movement [1]. This 

study considers the influence of individual muscles 

on internal knee mechanics during walking by 

stochastically varying the isometric muscle strengths 

in the model. 

 

METHODS 

 

A three body, 12 DOF knee model was developed 

from MR images of a healthy adult female (1.65 m, 

61 kg). Fourteen ligaments were represented by 

bundles of nonlinear elastic springs, with wrapping 

surfaces included to prevent penetration of bony 

geometries. Articular cartilage surfaces were 

segmented from the MR images and represented by 

high resolution meshes. Cartilage contact pressures 

were calculated based on the overlap depth between 

the articulating surfaces using an elastic foundation 

model. The knee model was integrated into an 

existing lower extremity musculoskeletal model [2], 

which included 43 muscles acting about the hip, knee 

and ankle joints. The predictive capacity of the model 

was validated by comparing simulated passive and 

active knee kinematics with in vivo 3D knee 

kinematics measured with dynamic MRI [3]. 

 

 
 

Figure 1:  Knee model and predicted tibial contact 

pressure map at first peak of tibiofemoral loading 

 

Whole body kinematics and ground reactions were 

recorded while the subject walked overground in a 

motion analysis laboratory. At each frame of a gait 

cycle, an optimization routine termed COMAK 

(concurrent optimization of muscle activations and 

kinematics) calculated the muscle forces, 

patellofemoral kinematics and secondary 

tibiofemoral kinematics that minimized a weighted 

sum of squared muscle activations cost function 

while satisfying overall dynamic constraints. The 

constraints required that the muscle forces and 

internal knee loads (contact pressures, ligament 

forces) produced by the optimized knee kinematics 
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generate the measured hip, knee (flexion) and ankle 

accelerations. 

 

To investigate the influence of neuromuscular 

coordination on knee mechanics, we used a high 

throughput computing grid to perform a parametric 

Monte Carlo analysis. We performed 2000 

simulations in which the maximum isometric muscle 

strengths were randomly sampled from a Gaussian 

distribution centered at the nominal model value with 

a standard deviation of 20% of the mean. By varying 

the strengths of the muscles, the probabilistic 

simulations result in differing neuromuscular 

coordination strategies. To compare the influence of 

muscle force variability on the variability in the 

resulting knee mechanics, we compared the 

coefficient of variation (CV) of the gastrocnemius, 

vastii and hamstrings forces at their peak to the CV 

of tibiofemoral kinematics and cartilage loading 

metrics at the same time points. 

 

RESULTS AND DISCUSSION 
 

Figure 2 Mean and 95% confidence intervals for 

predicted muscle forces and knee mechanics for 

2000 simulations. 

 

Generally, we found that large variations in muscle 

forces did not lead to large alterations in knee joint 

mechanics. This was especially true during the first 

half of the stance phase when the quadriceps were 

active. The CV of the vastus medialis and vastus 

lateralis were 0.16 and 0.20 respectively, while the 

CV of anterior translation and total tibiofemoral 

contact force were an order of magnitude smaller 

(0.003 and 0.004) at the same time point.  

Variations in the gastrocnemii and hamstring forces 

resulted in slightly larger effects on the knee joint 

mechanics. The CV of the medial and lateral 

gastrocnemii were 0.18 and 0.14, while the CV of the 

anterior translation, internal rotation and percentage 

of the contact force acting through the medial 

compartment were 0.05, 0.18 and 0.02, respectively. 

The CVs of the semimembranosus, semitendinosus, 

biceps femoris short head and long head were 0.19, 

0.20, 0.20 and 0.01, respectively, and the 

corresponding CVs of the anterior translation, 

internal rotation and percentage of the contact force 

through the medial compartment were 0.03, 0.08 and 

0.04, respectively. 

 

The increased influence of the variations in the 

gastrocnemii and hamstrings forces compared to the 

quadriceps is likely due to their biarticular function. 

While the CVs of each of these muscle groups were 

similar, the variations in the gastrocnemii and 

hamstrings forces occurred due to redistribution of 

the ankle moment to the soleus and hip moment to 

the gluteus maximus. The variation in the vastii 

muscle forces was largely due to a redistribution of 

the knee moment between the vastii muscles. 

 

In future work, we plan to investigate alternative 

optimization cost functions which will induce 

varying amounts co-contraction to better understand 

how joint stiffening can alter the magnitudes and 

locations of cartilage contact stresses. We expect this 

will result in larger variability in the predicted knee 

joint mechanics and may reveal muscle coordination 

strategies that are beneficial to restore healthy knee 

behavior in pathologic populations. 
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Neuromuscular coordination and internal knee tissue mechanics are inherently coupled. This coupling is 

especially apparent in the pathologic knee, where ligament and cartilage loads are highly dependent on muscle 

loading, and neuromuscular coordination is often altered to accommodate pathologic joint behavior. A better 

fundamental understanding of this coupling during locomotion could improve both orthopedic and neuromuscular 

retraining treatments for pathologies such as anterior cruciate ligament injury and osteoarthritis. The complex 

coupling of muscle and soft tissue loading about the knee creates potential for computational modeling to provide 

valuable insight. Musculoskeletal models have been created to study neuromuscular coordination in movement, 

but often use a highly simplified representation of the knee joint. At the other extreme, complex knee models 

predict the interaction of muscle, ligament and cartilage tissue loads without considering neuromuscular 

coordination. We have developed a novel multibody knee model and probabilistic simulation framework to study 

the interaction of neuromuscular coordination and internal knee mechanics during movement. 

 

We constructed a three body knee model that included 6 degree of freedom tibiofemoral and patellofemoral joints. 

Cartilage surfaces and ligament attachments were segmented from MR images of a healthy adult female. Fourteen 

ligaments were represented by bundles of nonlinear elastic springs. Cartilage contact pressures were calculated 

using an elastic foundation model. The knee model was integrated into a generic musculoskeletal model and 

validated by comparing simulated knee kinematics with in vivo kinematics measured by dynamic MRI [1]. 

 

Our simulation routine predicts internal knee tissue loads from kinetic and kinematic measurements of gait. At 

each time step, an optimization routine termed COMAK (concurrent optimization of muscle activations and 

kinematics) calculates the muscle forces, patellofemoral kinematics and secondary tibiofemoral kinematics that 

minimize a weighted sum of squared muscle activations while satisfying overall dynamic constraints. The 

constraints require that the muscle forces and internal knee loads (contact pressures, ligament forces) generate the 

measured hip, knee (flexion) and ankle accelerations [2]. 

 

To investigate the influence of neuromuscular coordination on knee behavior, we performed a parametric Monte 

Carlo analysis of 2000 simulations that randomly varied isometric muscle strengths by up to ±60% of the values 

in the nominal model. By varying the muscle strengths, the COMAK algorithm produces variable neuromuscular 

coordination strategies. Our simulations show that predicted muscle forces exhibit greater variability than net 

cartilage tissue loads. We are now investigating alternative optimization cost functions that induce co-contraction 

to better understand how joint stiffening can alter the magnitudes and locations of cartilage contact stresses.  

 

Figure 1:   

a) Multibody knee model.  

b) Tibial cartilage contact pressure at 

peak gastrocnemius loading.  

c) Mean and 95% CI of muscle and 

knee joint loading during the stance 

phase of gait. 
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Abstract:  

Knee joint behavior during locomotion results from interactions of neuromuscular coordination, passive joint 
structures, and articular contact mechanics. Because of the complexity of this dynamic system, these 
variables are often studied in isolation. Musculoskeletal models with simplified knee joint representations 
are used to investigate neuromuscular coordination during movement. Detailed finite element models 
predict the interaction of muscle, ligament and cartilage tissue loads at the joint level, without considering 
coordination and whole body movement dynamics. A mechanistic model that incorporates the functional 
interaction between neuromuscular coordination, knee joint structure and whole body movement is 
important to understand the causes of knee pathologies and to improve surgical treatments.  
 
We recently introduced a novel multibody knee model that includes six degree of freedom tibiofemoral and 
patellofemoral joints. Cartilage surfaces and ligament attachments were segmented from MR images of a 
healthy adult female. Fourteen ligaments were represented by bundles of nonlinear elastic springs. 
Cartilage contact pressures are calculated using an elastic foundation model. The knee model was 
integrated into a generic musculoskeletal model and validated by comparing simulated knee kinematics 
with in vivo kinematics measured by dynamic MRI [1]. We also introduced a novel simulation routine, 
termed COMAK (concurrent optimization of muscle activations and kinematics), that predicts internal knee 
tissue loads from kinematic and kinetic measurements of movement. At each time step, COMAK calculates 
the muscle forces, secondary knee kinematics, ligament forces and cartilage contact pressures that 
minimize the weighted sum of squared muscle activations while satisfying overall dynamic constraints. The 
constraints require that the muscle forces and internal knee loads generate the measured hip, knee 
(flexion) and ankle accelerations [2]. The model and simulation routine are being implemented in OpenSim 
and will be made publically available through simtk.org.  
 
To investigate the influence of neuromuscular coordination and structural joint properties on knee behavior 
during walking, we used a high throughput computing cluster to perform probabilistic analyses. By treating 
model and simulation parameters as stochastic variables, we have assessed the sensitivity of predicted 
knee mechanics to neuromuscular coordination strategies and model geometric and constitutive properties. 
Recently, we have begun evaluating the use of statistical shape modeling to rapidly generate subject-
specific knee models, as well as to study the influence of articular surface geometry and ligament 
attachment location on knee mechanics during movement. We envision our novel approach will enable the 
next generation of motion analysis tools, in which subject-specific joint behavior can be simulated, and the 
effects of interventions can be predicted and considered for clinical treatment planning. 

 
Figure Caption: Probabilistic analyses of model and simulation parameters allow for sensitivity studies of 
knee mechanics to neuromuscular coordination strategies, model geometries and material properties.  
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1. Introduction 

Knee cartilage loading during walking is determined by 

complex interactions of gait dynamics, muscle coordination, 

and passive joint structures. A better understanding of the 

influence of these factors on cartilage loading will provide 

insight into the etiology of osteoarthritis (OA) and improve 

treatments. Joint loading during locomotion is commonly 

studied using musculoskeletal modeling, with most studies 

relying on deterministic models based on population 

average geometries and parameters [1]. Alternatively, if the 

factors contributing to cartilage loading are modeled 

parametrically, this enables extensive uncertainty and 

sensitivity analyses, structure-function investigations and 

population modeling. We present a simulation framework 

that leverages statistical shape modeling, a novel solution 

algorithm and high throughput computing (HTC) to 

stochastically investigate functional knee mechanics.  

2. Methods 

We previously developed and validated a multibody knee 

model with 6 degree of freedom tibiofemoral and 

patellofemoral joints [2]. The knee model was integrated 

into a lower extremity musculoskeletal model [1] and the 

COMAK (Concurrent Optimization of Muscle Activations 

and Kinematics) simulation framework was introduced to 

predict muscle forces, secondary knee kinematics, ligament 

forces and cartilage contact pressures during movement 

from motion capture and ground reaction data [3].  

 

We extended this model and simulation framework to 

enable parametric variation of knee geometry, cartilage and 

ligament constitutive properties, neuromuscular 

coordination, and gait dynamics to investigate the 

contributions of these factors to cartilage loading. Ligament 

and cartilage constitutive properties were modeled as 

Figure 1. Framework for stochastic simulation of cartilage loading. High throughput computing and Monte Carlo sampling of 

parametric inputs enables uncertainty and sensitivity analyses, structure-function relationships and population modeling. 
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Gaussian distributions parameterized based on population 

data from cadaveric specimens. Knee geometries were 

parameterized using a statistical shape model. The model 

was developed based on segmented MR images of 14 young 

healthy subjects and included the bones and cartilage of the 

femur, tibia and patella. Ligament attachments and path 

wrap objects were placed on the mean shape model and 

linked to mesh nodes such that they morphed with the shape 

model. 

 

Parameterizing locomotor factors to generate distributions 

of neuromuscular coordination and gait dynamics proved 

more challenging. Neuromuscular coordination was varied 

by introducing individual muscle weighting terms into the 

COMAK cost function. The weight factors are sampled 

from probabilistic distributions and penalize or encourage 

activation of their respective muscle within the optimized 

solution to muscle redundancy. Parameterization of gait 

dynamics requires a sample is generated with dynamic 

consistency between the joint kinematics and ground 

reactions. We are currently investigating methods to 

combine statistical representations of the kinematics and 

ground reactions [4] with residual elimination algorithms 

[5] to meet this requirement. 

 

To stochastically simulate cartilage loading, we used Monte 

Carlo sampling of the parametric inputs and leveraged a 

HTC grid to perform thousands of simulations spanning the 

population variation. The correlation between each input 

parameter and the resulting cartilage loading metrics were 

then calculated to establish the relative influence of each 

input at specific instances in the gait cycle (Figure 1). 

 

3. Results 

In our work to date, we have used the stochastic simulation 

framework to perform uncertainty and sensitivity analyses, 

and investigate structure-function relationships. In a 

validation study comparing predicted knee contact forces to 

measured forces from an instrumented knee replacement, 

we used the stochastic framework to evaluate the 

propagation of uncertainty in ligament constitutive 

properties to contact force predictions [3]. Additionally, we 

used the stochastic framework to study the structure-

function relationship of the anterior cruciate ligament 

(ACL) and knee mechanics to inform the placement and 

properties of the graft in ACL reconstruction surgery [6]. 

The relationship between neuromuscular coordination and 

knee mechanics during walking was also investigated to 

provide insight to neuromuscular retraining following knee 

injury. Recently, we have applied the framework to 

investigate the influence of knee geometry on cartilage 

loading using the statistical shape model. 

4. Discussion 

With the emergence of parametric models of human 

anatomy and locomotor function, the feasibility and 

capabilities of stochastic simulation have improved 

substantially. We introduced a powerful yet 

computationally tractable stochastic simulation framework 

that leverages parametric modeling and high throughput 

computing to investigate cartilage loading during walking. 

We applied the framework to study model uncertainty and 

sensitivity as well as clinically relevant structure-function 

relationships. An important benefit of the framework is that 

it does not require all inputs to be parameterized from the 

same data set, allowing the combination of existing 

incomplete databases.   

 

In future work we intend to parameterize both healthy and 

clinical populations to construct population based models. 

This will allow predictions of subject specific cartilage 

loading to be analyzed within the context of a population. 

Additionally, it will allow comparisons of input 

distributions and simulated knee mechanics between 

healthy and clinical populations to reveal the consequences 

of pathologic symptoms on cartilage loading.  
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Articular cartilage loading is determined by complex mechanics across multiple scales 

resulting from interactions between cartilage contact, ligament tension, limb dynamics, and 

neuromuscular coordination. Simulating the contributions of these factors to knee behavior can 

enhance our understanding of knee pathologies, e.g. osteoarthritis, and enable improvements in 

clinical treatments. In this abstract, we present a multiscale knee model and simulation framework 

that leverage recent advancements in musculoskeletal simulation, statistical shape modeling, and 

high throughput computing (HTC). The framework is used to stochastically simulate muscle, 

ligament and cartilage loading during complex movements such as gait. 
 A multibody knee model with six degree-of-freedom tibiofemoral and patellofemoral joints 

was integrated into a lower extremity musculoskeletal model. Fourteen ligaments are represented 

by bundles of nonlinear springs. An elastic foundation model is used to compute cartilage contact 

pressure. The ligament attachment and articular geometries can be constructed from medical 

images [1] or generated from a statistical shape model to investigate population variability. A novel 

simulation routine, Concurrent Optimization of Muscle Activations and Kinematics (COMAK), 

simultaneously predicts muscle forces, ligament loads and cartilage contact pressures that are 

consistent with measured movement dynamics [1]. We have performed Monte Carlo analyses to 

assess the influence of parametric uncertainty on simulated knee mechanics by representing the 

constitutive properties, neuromuscular coordination patterns, and knee geometries as population 

distributions and leveraging HTC to run thousands of simulations in parallel.  

 COMAK can simulate internal knee mechanics over a gait cycle in under 30 minutes on a 

standard desktop computer. When deployed in parallel on a HTC grid, several thousand stochastic 

gait simulations can be performed in a few hours [1]. The framework has been used to investigate 

the influence of ligament properties on cartilage contact pressures during walking [1]. 

Furthermore, we are using the framework to simulate the influence of surgical factors on knee 

behavior following anterior cruciate ligament (ACL) reconstruction and patellar tendon 

advancement (PTA) procedures. The knee model and COMAK simulation routine are now being 

implemented into OpenSim 4.0. A webinar demonstrating the use of OpenSim with the freely 

available HTC resources of the Open Science Grid is available online [2]. 

 We aim to improve the fidelity of the articular cartilage model to investigate the subtle 

alterations in internal cartilage loading that likely are an important factor in the initiation of 

osteoarthritis. We developed a finite element model of the knee that incorporates the structural 

hierarchies of the cartilage tissue enabling detailed investigation of the microstructure mechanics 

[3]. In the future, we intend to apply the COMAK predicted joint mechanics as boundary 

conditions to this finite element model to investigate the influence of macroscale interventions 

such as gait retraining and orthopedic surgeries on the loading of the cartilage microstructure.   
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INTRODUCTION  

Internal knee mechanics result from complex interactions 

between passive ligamentous structures, articular contact, 

limb dynamics, and neuromuscular coordination. 

Understanding the contributions of each of these factors to 

knee behavior can enable improvements in surgical 

treatments for knee pathologies. Dynamic musculoskeletal 

simulation is a potentially powerful approach to gain insight 

into these interactions. However, conventional 

musculoskeletal models rely on a simplified representation 

of the knee [1], which doesn’t include ligaments or contact. 

Further, musculoskeletal models often presume mean 

parameter estimates, thereby ignoring the inherent 

uncertainties in model predictions. In this abstract, we 

describe a multibody knee model and simulation framework 

which leverage recent advancements in musculoskeletal 

simulation, statistical shape modeling, and high throughput 

computing (HTC). The framework is used to stochastically 

simulate muscle, ligament and cartilage loading during 

complex movements such as gait.  

 

METHODS 

The three-body knee model has six degree-of-freedom 

tibiofemoral and patellofemoral joints (Figure 1). Fourteen 

ligaments are represented by bundles of nonlinear springs. 

An elastic foundation model is used to compute contact 

pressure between articular cartilage surfaces [2]. The 

ligament attachment and articular geometries are 

constructed from subject-specific MR images [3] or 

generated from a statistical shape model to investigate 

population variability [4]. A novel simulation routine, 

Concurrent Optimization of Muscle Activations and 

Kinematics (COMAK), simultaneously predicts muscle 

forces, ligament loads and cartilage contact pressures that 

are consistent with overall movement dynamics [3]. We 

leverage HTC to perform thousands of independent 

simulations in parallel, allowing us to perform extensive 

sensitivity studies. By parameterizing the constitutive 

properties, neuromuscular coordination patterns, and knee 

geometries as population distributions, we are also able to 

use HTC to perform Monte Carlo simulations to assess the 

influence of parametric uncertainty on simulated knee 

mechanics.  

 

RESULTS AND DISCUSSION 

COMAK is able to simulate internal knee mechanics over a 

gait cycle in less than 30 minutes on a standard desktop 

computer. When deployed in parallel on a HTC grid, several 

thousand stochastic gait simulations can completed in a few 

hours [3]. The framework has been used to investigate the 

influence of ligament properties on cartilage contact 

pressures during walking [3]. We have also simulated the 

effects of patella height on the behavior of the knee extensor 

mechanism in normal and crouch gait [5]. 

 

The COMAK solution technique and HTC enable 

increasingly complex simulations of internal joint 

mechanics to be performed. In our own lab, we are using the 

framework to simulate the influence of surgical factors on 

knee behavior following anterior cruciate ligament (ACL) 

reconstruction and patellar tendon advancement (PTA) 

procedures. The knee model and COMAK simulation 

routine were initially implemented in custom code, but are 

now being ported into OpenSim 4.0. Model predictions, e.g. 

cartilage contact pressures, can be visualized in FEBio 

(Figure 1). A webinar demonstrating the use of OpenSim 

with the freely available HTC resources of the Open Science 

Grid is available online [6]. 

 

CONCLUSIONS 

Advances in imaging, shape modeling, solution algorithms 

and computing resources enable the simulation of detailed 

joint mechanics during movement. These advances provide 

a powerful platform to simulate complex orthopedic 

procedures and predict the effect of surgical factors on joint 

behavior during functional movement.  
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Figure 1: The simulation framework uses the following freely available resources: OpenSim (http://opensim.stanford.edu) for 

musculoskeletal simulation, the Open Science Grid (https://www.opensciencegrid.org) for high throughput computing, and 

FEBio (https://febio.org) for visualization of predicted cartilage contact pressures. 
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INTRODUCTION 

Rupture of the anterior cruciate ligament (ACL) 

leads to an increased risk of early onset osteoarthritis 

(OA), especially in cases of a concomitant meniscal 

injury [1]. It has been hypothesized that altered knee 

mechanics resulting from such injuries contribute to 

the initiation of OA [2]. However, it is challenging to 

assess how soft tissue injuries will affect knee 

mechanics during functional movement. In vivo 

cartilage loading results from the interaction of 

movement dynamics, neuromuscular coordination, 

passive ligamentous structures, and cartilage 

properties and morphology, all of which are known 

to change following soft tissue injury [3]. We have 

developed an integrated multibody knee model and 

movement simulation framework to investigate the 

influence of these factors on cartilage loading. In this 

study, we performed virtual resections of the ACL 

and menisci to study their influence on cartilage 

loading and functional knee mechanics during 

walking. 

 

METHODS 

 

Figure 1:  Multibody knee model with 6 DOF joints, 

ligaments, and cartilage and meniscal contact. 
 

A multibody knee model with independent femur, 

tibia, patella, and medial and lateral menisci bodies 

was constructed from magnetic resonance images 

and integrated into a generic musculoskeletal model 

[2] (Fig. 1). The bodies were connected by six degree 

of freedom (DOF) joints and constrained by 

ligaments and articular contact. Fourteen ligaments 

and the meniscal horns were represented as bundles 

of nonlinear springs. An elastic foundation model 

was used to compute contact pressure for cartilage-

cartilage and meniscal-cartilage interactions.  

 

Full body kinematics and ground reaction forces 

were measured in a motion analysis lab during 

overground walking (1.2 m/s). A novel simulation 

routine, Concurrent Optimization of Muscle 

Activations and Kinematics (COMAK), was used to 

predict muscle forces, ligament loads, and cartilage 

and meniscal contact pressures during walking [2]. 

COMAK simultaneously optimizes muscle 

activations and secondary knee kinematics (5 

tibiofemoral DOF, 6 patellofemoral DOF, and 12 

menisci DOF) to satisfy both whole-body and joint-

level movement dynamics, while minimizing a 

weighted squared muscle activation objective 

function. The simulation was repeated for four cases: 

intact, ACL deficient (ACLd), menisci deficient and 

combined ACLd and menisci deficient.  

  

RESULTS AND DISCUSSION 

 
Figure 2:  Predicted anterior tibial translation in the 

healthy and ACL deficient knee during walking. 

 

Compared to the intact simulation, the ACLd knee 

demonstrated increased anterior translation (Fig. 2) 

and internal rotation throughout stance (max: 4.4 

mm, 3o). In early and mid-swing, these kinematics 

converged towards the intact pattern, but diverged 
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again in terminal swing. A similar trend was 

predicted for the menisci deficient knee. The 

combined ACLd and menisci deficient knee induced 

substantially larger anterior translation throughout 

stance, with instances of posterior tibial subluxation 

in swing.  

 

Both ACL deficiency and menisci deficiency 

substantially altered cartilage loading on the tibial 

plateau throughout the gait cycle (Fig 3). At the 

instant of peak ACL force in the intact simulation, 

the primary change in the ACLd knee was a posterior 

shift in the medial (2.4 mm) and lateral (2 mm) center 

of pressure (COP). In the menisci deficient case, 

there was an increase in peak pressure (+1.3 MPa) 

and a posterior shift in the medial COP (1.5 mm). 

The combined ACLd and menisci deficient knee 

experienced a dramatic increase in peak contact 

pressure (+6.2 MPa) and posterior shifts in the 

medial (9.7 mm) and lateral COP (3.3 mm).  
 

The medial meniscus provided the primary restraint 

to anterior tibial translation in the ACLd case, along 

with secondary contributions from the lateral 

meniscus, MCL, LCL and IT band (Fig. 4). In the 

menisci deficient knee, the peak loading in the ACL 

increased by 1.9x to provide anterior restraint. In the 

combined ACL and meniscus deficient knee, the 

loading in the MCL increased by 6.6x at the instant 

of peak ACL loading in the intact knee. In the ACLd 

and menisci deficient cases, the anterior shift of the 

tibia oriented the patellar tendon more vertically in 

the sagittal plane, and thus reduced the anterior 

restraint required of the passive knee structures. In 

the combined ACLd and menisci deficient case, the 

magnitude of the anterior tibial translation resulted in 

a brief portion of stance where the patellar tendon 

applied a posterior force to the tibia.   

 

Our simulation predictions corroborate experimental 

studies of the ACL deficient knee. Using dual 

fluoroscopy and MRI, Li et al. found a posterior shift 

of tibial contact on the medial plateau in ACL 

deficient knees during lunging [3]. Similar to our 

simulation predictions, Andriacchi et al found 

alterations in anterior translation and internal rotation 

during the terminal portion of swing, which persisted 

throughout stance [4].  

 
Figure 4:  Loading in the passive knee structures at 

the instant of peak ACL force during gait in the intact 

knee. AP: Anterior force component. (*) Denotes the 

patellar tendon applied a posterior force to the tibia. 

   

CONCLUSIONS 

Our simulation predictions suggest that injury to the 

ACL and/or meniscus leads to altered cartilage 

contact locations and pressure magnitudes during 

walking. In the future, we intend to use this 

simulation framework to investigate muscle 

coordination and movement strategies that can 

restore normative cartilage loading patterns in knees 

with ACL deficiency and/or meniscal damage. 
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Figure 3: Tibial cartilage pressure patterns due to cartilage-cartilage contact at the instant of peak ACL loading 

in the intact knee for intact, ACL deficient, menisci deficient and combined ACLd and menisci deficient cases. 
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INTRODUCTION: Dynamic imaging experiments have revealed that anterior cruciate ligament (ACL) reconstruction often fails to restore normative 
tibiofemoral kinematics during functional movement. These kinematic abnormalities alter cartilage loading and contribute to early-onset osteoarthritis (OA) 

[1]. We recently found that bilateral differences in the sagittal plane angles of a patient’s intact and reconstructed ACL are correlated with asymmetric 

tibiofemoral kinematics measured by dynamic MRI during an open-chain knee flexion-extension task [2]. However, it is unknown whether these 
relationships extend to walking, and the direct cause-effect relationship between controllable surgical factors and altered joint mechanics has not been 

established. The purpose of this study was to use surgical simulations to determine the cause-effect relationships between ACL graft geometry, stiffness, and 

pretension on knee mechanics during walking. The model provides an objective basis for interpreting empirical observations on ACL reconstructed knees 
and could be used to inform adjustments to surgical procedures to better restore healthy knee mechanics. 

 

METHODS: We developed a multibody knee model with femur, tibia, patella, and menisci bodies connected by 6 degree of freedom joints from MRI of a 
healthy female (23 years). The knee was integrated into a full body musculoskeletal model [3]. Articular contact pressures (cartilage-cartilage and cartilage-

meniscus) were computed using an elastic foundation formulation and ligaments were represented as bundles of nonlinear springs. The predictive capacity of 

the model was validated by comparing simulated knee kinematics against in vivo measures made by dynamic MRI during a loaded flexion-extension task.  

Whole body kinematics and ground reactions were collected during overground walking. The COMAK simulation algorithm was then used to predict the 

secondary knee kinematics, muscle and ligament forces, and articular contact pressures necessary to replicate the overall measured motion (Figure 1a) [4].   

 A Monte Carlo analysis (10,000 surgical simulations) was performed to quantify the effect of graft tunnel placement, stiffness, and pretension on knee 
mechanics during walking. The ACL attachment footprint was varied in a uniform distribution ± 5 mm anterior-posteriorly and medial-laterally on the tibial 

plateau, and ± 5 mm anterior-posteriorly and superior-inferiorly on the femoral condyle. The ACL stiffness and reference strain were varied in uniform 
distributions ranging from ±50% of the nominal stiffness and ± 0.03 of the nominal reference strain. To quantify the relative importance of the surgical 

factors and determine their influence on knee mechanics, the predicted secondary tibiofemoral kinematics and cartilage loading patterns were correlated to 

the ACL graft geometry, stiffness and reference strain using Spearman’s correlation coefficient (R) (Figure 1b). 
 

RESULTS: Simulated surgical variability had substantial influence on tibiofemoral mechanics during walking. In particular, there was substantial variation 

in predicted anterior translation (max range = 8.6 mm), internal rotational (max range = 4.2o), and the anterior location of the center of pressure (COP) on the 
medial plateau (max range = 5.9 mm) during stance. Of the surgical parameters considered, the ACL graft geometry measures had the greatest effect on the 

predicted knee mechanics. At the instance of peak ACL loading (15% of gait cycle), anterior translation and internal rotation were most correlated with the 

ACL sagittal plane angle (R=0.63, -0.36, respectively). The anterior location of the center of pressure (COP) on both the medial and lateral tibial plateaus 
was most correlated to the sagittal plane angle, while the lateral location of the COP for both plateaus was most correlated to the coronal angle, axial angle 

and lateral tibial attachment location (Figure 1c).  

 
DISCUSSION: This study suggests ACL graft orientation angles are the surgical factors most strongly associated with knee mechanics during walking.  

ACL graft stiffness and pretension had some influence on cartilage contact locations, but had minimal effect on loading magnitudes. Our results provide 

mechanistic insights into prior empirical observations. In our model, a more vertical sagittal plane graft orientation reduced the anterior-posterior 
contribution of the ACL force. This resulted in increased anterior translation during walking and provides a mechanism to explain the correlation found 

empirically between sagittal graft angle and anterior translation in an open-chain knee flexion-extension task [2]. Similar to our model predictions, a positive 

correlation between internal tibial rotation and both ACL sagittal and axial plane angles has also been found previously during walking using the point 
cluster technique [5].  

 

SIGNIFICANCE/CLINICAL RELEVANCE: This study indicates that anatomic placement of the bone tunnels during ACL reconstruction is important to 
restore normative knee mechanics during walking and mitigate the risk of OA. In particular, positioning the tunnels to replicate the native sagittal plane 

angle of the ACL appears especially important to restore the location of cartilage loading on the medial tibial plateau. 
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